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Abstract

This research develops methods to determine index of refraction via polarimetric-

hyperspectral radiance measurements from a remote platform without detailed a pri-

ori information about the target and its surroundings. A forward model is presented

taking a fundamental material property, the spectrally resolved index of refraction,

and relating it to a smaller number of parameters using either the Lorentz oscillator

model or another model developed as part of this research. For smooth surfaces,

which are the focus of this work, the reflectance and emittance of a material can

be solved for using Fresnel’s equations. Finally, the radiance measured by a sensor

observing an object can be predicted from these reflectance values and knowledge of

the downwelling radiance, object temperature, and atmospheric conditions. The goal

of this research is to invert this problem, using measured polarimetric hyperspectral

radiance values to estimate the complex index of refraction, Ñ , object temperature,

downwelling radiance, and viewing angle relative to the target surface normal. Data is

collected using a Telops LWIR (875-1250 cm−1) Hypercam which has been customized

by adding a linear wire grid polarizer to the front of the instrument. The index of

refraction retrieval technique is applied to synthetic data, laboratory measurements

with blackbody-like downwelling radiation, and outdoor measurements over a short

path under daytime, clear sky downwelling.

Results from synthetic datasets showed the how the retrieval performed when

varying thermal contrast, sensor noise, spectral resolution, and combinations of view-

ing angles. Three datasets under laboratory conditions were examined. The first

experiment explored the ability to retrieve the complex index of refraction, Ñ , from

a material much warmer than its surroundings, i.e. an emission-dominated signa-
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ture. Specifically, the complex index of refraction of a heated Pyrex beaker was

estimated to within 0.2 rms difference when compared to ”truth” estimated via ellip-

sometry measurements. Results show that the surface normal can also be estimated

to within 5 degrees while still simultaneously fitting index of refraction object tem-

perature, and downwelling radiance. Additionally, two experiments were conducted

using a blackbody to illuminate a quartz glass block and silicon carbide wafer, i.e.

a reflection-dominated signature. Using these measurements, index of refraction was

retrieved to within 0.08 rms error, again compared to ”truth” estimated via ellip-

sometry measurements, for both materials. For these two experiments, the surface

normal was retrieved within 3◦ while maintaining the accuracy of the Ñ retrieval.

In addition to the data collected in a laboratory setting, an experiment was also

conducted outdoors under clear sky day-time conditions with a variety of different

targets and using a number of different settings (viewing angle, spectral resolution,

etc.) The downwelling radiance under a clear sky is much more spectrally structured

than the blackbody-like downwelling radiance seen the laboratory data and requires

more parameters to properly describe. Even with this additional complexity, however,

the index of refraction could still be retrieved to within 0.16 rms error from truth for

a quartz glass target and 0.04 rms error for a sapphire glass target.

All of these results compare favorably to existing material identification tech-

niques, specifically the maximum smoothness temperature emissivity algorithm. The

primary advantage of estimating index of refraction instead of emissivity is because

the index of refraction is invariant to the viewing angle, unlike emissivity. Addi-

tional work will need to be done to make this techinique useful operationally, such

as accounting for rough surfaces and improving the processsing time, but this work

represents the first time that index of refraction has been accurately determined hy-

perspectrally in the LWIR without detailed a priori knowledge of scene conditions.

v
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PASSIVELY ESTIMATING INDEX OF REFRACTION FOR SPECULAR

REFLECTORS USING POLARIMETRIC HYPERSPECTRAL IMAGING

I. Introduction

As off-nadir remote sensing platforms become increasingly prevalent in remote

sensing, material identification techniques robust to changing viewing geometries must

be developed. Current identification strategies often rely on estimating reflectivity or

emissivity which vary with viewing angle. Presented here is a technique, leveraging

a combination of two of the most common remote sensing modalities: polarimetric

imaging (PI) and hyperspectral imaging (HSI), to estimate index of refraction which

is invariant to viewing geometry.

Polarimetric remote sensing measures the proportion of light arriving at the sensor

whose electric field is oriented in one plane as compared to an orthogonal plane. There

are many different methods for measuring this, but for this work, polarization will

be measured using a linear polarizer, which blocks out one linear polarization state.

By rotating the polarizer to different positions, the polarization state of the radiance

arriving at the detector can be determined. In addition to remote sensing applications,

polarimetric imaging is used extensively in astronomy [1, 2], biology [3, 4], medicine

[5, 6], and geology [7, 8]; as well as many other fields.

Within remote sensing applications, polarimetry is particularly useful in discrim-

inating man-made targets from background. Flat, smooth objects tend to have a

large polarimetric signature, while natural objects tend to have rougher, randomly

oriented, surfaces, which reduces their polarization. Because of this, polarimetry is

a popular modality in target detection. Polarization can also be beneficial in distin-
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guishing categories of materials. Metals tend to polarize light very minimally, while

dielectrics usually have a larger polarizing effect. With an understanding of certain

scene conditions, this can be extended to calculate the index of refraction of materi-

als, and/or their orientation relative to the sensor. This is of particular interest, as

it directly relates to this research, and will be discussed in more detail later in this

document. Measuring index of refraction at one wavelength can be useful, but dif-

ferent materials may often have similar indicies in one spectral band. To accurately

contrast one material from another, measurements at multiple wavelengths — i.e.

hyperspectral measurements — are useful.

Another common remote sensing modality is hyperspectral imaging, which mea-

sures the amount of light in a large number of different frequency bands. Like polari-

metric imaging, this too has a wide variety of uses including ecology [9, 10], geology

[11, 12], gaseous plume detection and characterization [13, 14], and medicine [15, 16]

to name a few. The amount of light in each band is compared and this data can be

manipulated to find groups of pixels in a scene that are likely made of similar materi-

als. With careful calibration, material properties, such as reflectivity and emissivity,

can be determined spectrally. This information can be compared with known spec-

tral reflectances of materials to identify the material. For this research, measurements

are taken in the Long-Wave Infrared (LWIR), sometimes referred to as the Thermal

Infrared, part of the electromagnetic spectrum, specifically from 875-1250 cm−1.

One potential issue with using reflectivity or emissivity to classify materials is

that these quantities vary with viewing angle. [17, 18, 19, 20, 21] If the viewing an-

gle is varying, this means that a single reference spectrum can no longer adequately

describe the target. Instead, a group of target signatures — commonly referred to as

a subspace — is used to classify a material. A problem arises, however, when deal-
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ing with spectrally similar materials because these subspaces can ”overlap” making

classification difficult.

Another issue with purely hyperspectral techniques is that the reflectivity and

emissivity of a material are dependent on polarization. Unless the hyperspectral

sensor is polarimetrically calibrated, which is unlikely, there can be errors in measured

reflectances, even with perfect radiometric calibration. This idea will be discussed in

detail later.

By combining these two common, but traditionally separate, remote sensing modal-

ities into one polarimetric-hyperspectral (P-HSI) dataset, there is potential to improve

on existing material identification techniques. Specifically, the goal of this research

will be to determine if index of refraction can be measured remotely without the need

for detailed and highly accurate knowledge of scene characteristics, which is required

by existing index of refraction retrieval techniques. Index of refraction is a desirable

quantity for material identification because, unlike reflectivity or emissivity, it is in-

variant to viewing geometry for most of materials of interest in remote sensing. This

means that not only can a single reference spectrum be used to identify a material

regardless of viewing geometry, but additionally multiple viewing geometries can be

used to help improve the classification accuracy. Other potential benefits of exploiting

this full P-HSI dataset, such as 3D scene reconstruction, are also discussed.

1.1 Document Outline

First, the theory and mathematical framework for this research will be presented.

This section will walk through what is essentially the forward model for this research,

examining how index of refraction can be used to determine measured polarized ra-

diance values. The goal of this research is to reverse this process, taking polarized

radiance measurements and solving for index of refraction, as well as some scene pa-

3



www.manaraa.com

rameters. Also as part of this section, the current calibration procedure for our P-HSI

sensor will be described. Following the theory section, some of the previous work on

topics relevant to this work will be discussed. The focus will be on techniques for

material identification, but other topics such as target detection, and shape estima-

tion will be touched on as well because they are closely related to this work. Next,

the actual retrieval routine will be described showing how P-HSI data is manipulated

to estimate index of refraction. Then, results from a variety of both measured and

simulated data will be shown and analyzed. Finally, a brief summary of the work will

be given in the last section.
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II. Theory

The intent of the first part of this chapter is to develop a forward model for how

fundamental material, and scene, properties will affect the observed polarized radiance

signature from a target. It is important to develop this understanding because the

primary goal of this research to follow will be to invert this process, using measured

polarimetric radiance values to determine material composition and scene conditions.

After this, a brief overview of ellipsometry, which is closely related to this research,

will be given. While ellipsometry is traditionally done in a laboratory setting, the

goal of this research is to estimate index of refraction from a remote observation

platform, without an active illumination source. The final part of the chapter provides

a synopsis of the instrument used to collect the data presented in Chapter V, as well

as the technique used to calibrate the instrument.

2.1 Dielectric Constant and Index of Refraction

The first step to interpreting the radiance signature of a target is to understand

how light interacts with a material. An understanding of fundamental material prop-

erties can be developed by starting with Maxwell’s equations in matter:

Gauss’s Law: ∇ · �D = ρf

Gauss’s Law for Magnetism: ∇ · �B = 0

Faraday’s Law: ∇× �E = −∂ �B
∂t

Ampere’s Law w/ Maxwell’s additon: ∇× �H = ∂ �D
∂t

+ �Jf ,

(1)

where; �E is the electric field, �B is the magnetic field, and ρf is the free charge

density. �D = ε0εr �E, �H = B
μ0μr

, and �Jf is the free current density equal to σ �E. σ is

the conductivity of the material, ε0 and μ0 are the permittivity and permeability of
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free space, εr and μr are the permittivity and permeability of the material relative to

free space. For the purpose of this research, it is assumed that non-magnetic materials

are being examined; namely μr = 1. εr is referred to as the relative dielectric constant

of the material [22].

Taking the curl of Faraday’s Law gives

∇×∇× �E = − ∂
∂t
∇× �B

∇2 �E = σμ0
∂ �E
∂t

+ μ0ε0εr
∂2 �E
∂t2

.

(2)

Note that it is assumed ρf = 0, which has been previously demonstrated to be a safe

assumption [23]. Supposing a plane wave solution for the electric field, that is to say

an �E such that

�E = �E0e
i(k�r−ωt), (3)

it can be derived that

k2 = σμ0ωi+ μoε0εrω
2. (4)

The index of refraction is defined as the ratio of the velocity of light in vaccuum to

the velocity of light in the material. The speed of light is given as ω/k. Solving

Faraday’s Law in vaccuum, shows that the speed of light in vaccuum is c =
√

1
μ0ε0

.

With this information, the index of refraction can be determined:

Ñ2 =
σ

ε0ω
i+ εr = ε̃r. (5)

ε̃r is referred to as the complex relative dielectric constant. For simplicity, an ε1 can

be defined as the real part of the complex dielectric constant and ε2 as the imaginary

part. Similarly, complex index of refraction can be defined in terms of a real and
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imaginary component, Ñ = n+ iκ. Expanding Equation (5) shows

ε1 = n2 − κ2

ε2 = 2nκ.

(6)

Solving for n and κ gives:

n = 1√
2

√
ε1 +

√
ε21 + ε22

κ = 1√
2

√
−ε1 +

√
ε21 + ε22.

(7)

These quantities are often useful in characterizing properties of materials such as

surface reflectance, which is described by the Fresnel equations.

2.2 Lorentz Oscillator Model

Another classical model of the complex dielectric constant is the Lorentz oscillator

model. This model treats the bonds in a lattice as a series of driven, damped springs.

The equation of motion for an electron in this configuration is

meẍ+ 2πmeΞẋ+ 4π2meν
2
0x = −eEloc. (8)

me is the mass and e is the charge of an electron. Bold face is used here to denote

a vector instead of an arrow to avoid overlap with the dots, which represent time

derivatives. The first and third terms are the classic harmonic oscillator, the second

term is the damping term and the final term is the driving force. Eloc is assumed

to be equal to the incident electric field perturbing the system. Ξ is a the collision

frequency and is defined Ξ = 1/2πt̄, where t̄ is the mean time between collisions of

an electron with the lattice. ν0 is the resonant frequency of the oscillator [24].
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Assuming a periodic solution for both x and E gives

− 4π2ν2mex− 4π2imeΞνx+ 4π2meν
2
0x = −eE, (9)

which can be rearranged to give

x0 =
e

4π2me

1

ν2
0 − ν2 − iΞν

E0. (10)

This means the incident electric field generates an effective dipole, which polarizes

the material. The electric displacement can be expressed: D = ε0E+P, where P is

the polarization. The polarization is defined as the total dipole moment generated:

P = Nex =
Ne2

4π2me

1

ν2
0 − ν2 − iΞν

E. (11)

N is the number of free electrons per unit volume. As stated in the previous sec-

tion, electric displacement can also be expressed D = ε0εrE. Equating these two

expressions for displacement and plugging in Equation (11), gives an expression for

the dielectric constant:

εr(ν) = ε∞ +
Ne2

4π2meε0

1

ν2
0 − ν2 − iΞν

= ε∞ +
ν2
p

ν2
0 − ν2 − iΞν

, (12)

where νp is called the plasma frequency. ε∞ represents the limit of the dielectric

constant far away from the resonant frequency. The real and imaginary components

are then

ε1 = ε∞ +
ν2p(ν

2
0−ν2)

(ν20−ν2)2+Ξ2ν2

ε2 =
ν2pΞν

(ν20−ν2)2+Ξ2ν2
.

(13)

From this, the index of refraction can be solved for using Equation (7). The model

8
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can also be extended to account for multiple resonances by summation:

εr(ν) = ε∞ + ν2
p

J∑
j=1

fj
ν2
j − ν2 − iΞjν

. (14)

fj is the relative strength of the jth resonance, and is normalized such that

J∑
j=1

fj = 1. (15)

The interesting thing about this model is that the dielectric constant for many differ-

ent wavelengths of incident light can be described using only a few parameters. With

this model, a large number of spectral measurements can be described by 3J + 1

parameters. If J is small enough, this means the index of refraction at every spectral

point measured can be described by fewer parameters than there are measurements,

making the determination of index of refraction an overdetermined problem. Over

the spectral bandwidths measured for this work, it is unlikely that a material will

have more than a couple resonances that will contribute significantly to the dielec-

tric constant. The hope is that this will allow additional parameters, such as surface

temerature and downwelling radiance, to be solved for as well while ensuring the prob-

lem is still overdetermined. To accomplish this, however, it is necessary to determine

how these parameters will affect the radiance arriving at the sensor.

2.3 Fresnel’s Equations

The Fresnel equations were derived by Augustin-Jean Fresnel in 1821 to describe

the behavior of a plane wave at a perfectly flat, infinitely large boundary between

two materials. They relate the reflectance and transmittance of an electric field

at the interface, based on the orientation of the its electric field, to the index of

9
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refraction of both materials and the angle of incidence of the incoming light, θi. This

research focuses on specular materials so the assumptions of the Fresnel equations are

valid. For rough surfaces, a more detailed model of the reflection, perhaps a pBRDF,

would be necessary. As stated before, it is also presumed that μ = μ0. With these

assumptions, the Fresnel reflection coefficients are [25]:

rs =
Ñcosθi−

√
1−Ñ2sin2θi

Ñcosθi+
√

1−Ñ2sin2θi

rp =
cosθi−Ñ

√
1−Ñ2sin2θi

cosθi+Ñ
√

1−Ñ2sin2θi

(16)

Again, Ñ is used to denote the complex index of refraction, as opposed to n, which

represents only the real part. Subscript s denotes electric field oscillating perpendic-

ular (senkrecht in German) to the plane of reflectance, while subscript p denotes the

electric field in the plane of reflectance.

Because the electric field oscillates so quickly, it is impossible for a sensor to

directly measure it. Instead, a sensor will measure intensity, which is defined as the

modulus squared of the field strength. Thus, the actual reflectivity of a material is

the modulus squared of the Fresnel reflection coefficients. Figure 1 shows how the

polarized reflectances can vary with angle.

This indicates index of refraction can be determined from polarized reflectance or

emissivity measurements, for smooth surfaces, using the Fresnel equations. Because

this work is done in the LWIR, most surfaces will appear tolerably smooth relative

to the wavelength of light interacting with them. The last step in determining how

polarized radiance measurements map to index of refraction is to understand how

reflectance and emissivity factor into the measured radiance from a target.

10
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Figure 1. Plot of s- and p-pol reflectances as a function of viewing angle for n = 1.5 and
κ = 1. The dip in the p-pol reflectance, and usually the maximum polarization, occurs
at Brewster’s angle. For a purely real index of refraction, the p-pol reflectance will drop
to zero at this angle. Both polarization states will always have identical reflectances at
normal viewing angle and unit reflectance at an angle of π

2 .

2.4 Observed Radiance

In the LWIR, radiance measured by the sensor comes from three principal sources:

radiance emitted from the surface of the target, downwelling radiance being reflected

off the target, and radiance generated by the atmosphere along the line-of-sight to

the target. Figure 2 shows a basic schematic of this.

Figure 2. Basic schematic showing the sources of radiance arriving at the sensor.

11
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For this work, it is assumed the object being observed is opaque in the LWIR.

There are certain materials which are transmissive in this spectral region; but, the

majority of potential targets of interest for remote sensing are not. Radiance from the

first two sources must be transmitted through the atmophere. In total, the radiance

arriving at the sensor can be expressed:

Lsens(ν̄, θ) = τa(ν̄) [ε(ν̄, θ)B(ν̄, Te) + ρ(ν̄, θ)Ld(ν̄)] + La(ν̄). (17)

θ denotes the elevation angle of the sensor relative ot the surface, ε(ν̄, θ) is the spectral

emissivity of the material, ρ(ν̄, θ) is the reflectance, B(ν̄, Te) represents blackbody

radiance at the temperature of the object, Te. Ld is the downwelling radiance, La

is the path radiance, and τa is the transmission of the atmosphere along the line-of-

sight. For an opaque material in thermal equilibrium, ε(ν̄, θ) = 1 − ρ(ν̄, θ) [26]. So,

Equation (17) can be rewritten as

L(ν̄, θ) = τa(ν̄) [ρ(ν̄, θ) [Ld(ν̄)− B(ν̄, Te)] + B(ν̄, Te)] + La(ν̄). (18)

This is purely a hyperspectral measurement, however, and polarization has not been

accounted for.

As revealed by the Fresnel equations, a surface’s reflectance, and thus emissivity,

is polarization dependent. A polarimetric sensor will measure both the s-pol and

p-pol radiances, which can be expressed

Ls(ν̄, θ) = τa(ν̄)
[
ρs(ν̄, θ)

[
Ld(ν̄)

2
− B(ν̄,Te)

2

]
+ B(ν̄,Te)

2

]
+ La(ν̄)

2

Lp(ν̄, θ) = τa(ν̄)
[
ρp(ν̄, θ)

[
Ld(ν̄)

2
− B(ν̄,Te)

2

]
+ B(ν̄,Te)

2

]
+ La(ν̄)

2
.

(19)

This presumes that the downwelling radiance, path radiance, and transmittance of
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the atmosphere are all unpolarized, which has been shown to be a valid assumption

in the LWIR[27].

If accurate information about atmospheric, scene, and object parameters, is avail-

able, ρs and ρp can be directly calculated. In practice this is difficult, but the hope

of this research is to estimate these parameters to sufficient accuracy using only the

data and reasonable assumptions about the scene. If the angle of the surface relative

to the sensor is known, the complex index of refraction of the material can be calcu-

lated from one viewing angle, whereas two measurements, at different angles, would

be required for an instrument unable to measure polarization.

Another interesting consequence of this derivation is that it demonstrates the po-

tential for a fundamental error to be introduced into the reflectance calculation if

polarization effects are not properly accounted for. Hyperspectral material classifica-

tion approaches often attempt to calculate the unpolarized reflectance or emissivity

of a material, given

ρ =
ρs + ρp

2
, or ε =

εs + εp
2

, (20)

where subscript s and p are the polarization states. If a source is polarized, this

can introduce an error into unpolarized measurements of reflectance. Any sensor will

have some polarimetric bias; that is to say, one polarization state has a larger relative

proportion of light transmitted through the system optics. Hyperspectral systems

in the LWIR are almost always calibrated using blackbodies, which are unpolarized,

so accounting for this polarization-dependent gain is impossible. A polarized sensor

allows radiance in each polarization state to be separately calibrated allowing for

a more accurate reflectance measurement. This can be illustrated with a simple

example.

Assume a noise-free scenario where a 100◦C blackbody is reflecting off a smooth

surface, n = 1.5 and κ = 1, at an angle of 70 degrees. Based on previously
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measured data, the band-averaged gain of the Telops Hypercam varies from 2.66 ∗
109 DN

W
cm2srcm−1

to 2.18 ∗ 109 DN
W

cm2srcm−1
depending on polarizer angle. With these param-

eters, a polarization-agnostic gain is used, the measured reflectance would be

ρ =
GsLs +GpLp

GavgB(100◦C)
=

Gsρs
B(100◦C)

2
+Gpρp

B(100◦C)
2

GavgB(100◦C)
=

Gsρs +Gpρp
Gs +Gp

= 0.352. (21)

The true reflectance for a material with these parameters is 0.329. The error will

impede the ablility of a hyperspectral-only sensor in distinguishing two spectrally

similar materials. By incorporating a polarization component, true reflectance of the

material can be accurately measured in both polarization states leading to more ac-

curate reflectivity or emissivity retrievals. This error becomes particularly important

at far off-nadir viewing geometries as the polarization component is larger relative to

the near-nadir case.

2.5 Stokes Vector

The Stokes vector is a mathematical way of describing the polarization state of

light. In general, there are four quantities: S0, S1, S2, and S3. Traditionally, these

are represented in vector form, and the collection is known as a Stokes vector. S0

represents the total radiance regardless of polarization state. S1 is the difference

between the intensity of vertically (0◦) and horizontally (90◦) polarized light. S2

denotes the difference between light polarized at 45◦ versus -45◦. Note that -45◦ is

equivalent to 135◦, in fact, all angles are equivalent to the angles that are multiples

of 180◦ greater or less than themselves. S3 represents the difference between right-

and left-handed circular polarization. It is impossible to measure circular polarization

with only a linear polarizer, therefore, the sensor used for this research cannot measure
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this quantity. This is not an issue, however, since circular polarization is almost alway

negligible in remote sensing [28].

The Stokes parameters can be used to calculate useful terms describing the amount

and direction of polarization in a scene. The two most common of these are Degree of

Linear Polarization (DoLP) and Angle of Polarization (AoP). The DoLP is expressed:

DoLP =

√
S2
1 + S2

2

S0

. (22)

As the name suggests, DoLP is a measure of how linearly polarized something is,

which can be useful in identifying the material and/or in determining the elevation

angle of a material relative to the sensor. AoP is defined as:

AoP = tan−1
S2

S1

. (23)

This quantity denotes the angle between the plane of reflectance and the zero degree

polarizer angle in the instrument reference frame.

Using the description of at-sensor radiance described in the previous section, an

equation expected Stokes parameters can be derived.

S0(ν̄, θ) = Ls(ν̄, θ) + Lp(ν̄, θ) =

τa(ν̄)
[
(ρs(ν̄, θ) + ρp(ν̄, θ))

[
Ld(ν̄)

2
− B(ν̄,Te)

2

]
+B(ν̄, Te)

]
+ La(ν̄),

(24)

which simplifies to Equation (18).

In order to solve for reflectance, both Ld(ν̄) and B(ν̄, Te) must be determined at

every spectral point, but both can be modeled by fewer parameters than the number

of spectral measurements. The B(ν̄, Te) term is defined solely by the temperature of

the surface. The downwelling radiance can either be modeled or measured. Many

atmospheric models exist which can be fed weather conditions such as humidity, tem-
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perature, and atmospheric pressure. These parameters can be left as unknowns and

fit using the measured radiance data or potentially measured by weather instruments.

These estimates of atmospheric parameters can also be used to calculate La(ν̄). With

this notation, and assuming AoP = 0, S0 and S1 can be expressed as

S0(ν̄, θ) = τa(ν̄)
[
1
2
(ρs(ν̄, θ) + ρp(ν̄, θ)) (Ld(ν̄)− B(ν̄, Te)) + B(ν̄, Te)

]
+ La(ν̄)

S1(ν̄, θ) =
1
2
τa(ν̄) (ρs(ν̄, θ)− ρp(ν̄, θ)) (Ld(ν̄)− B(ν̄, Te)) .

(25)

This derivation can also be expressed in Mueller matrix form. Because it is presumed

that the circular polarization is zero for targets of interest, only the 3x3 Mueller

matrix is used. The Mueller matrix for Fresnel reflection — again when AoP = 0 —

is defined as [27]:

F̂ =

⎡
⎢⎢⎢⎢⎣
rsr

∗
s + rpr

∗
p rsr

∗
s − rpr

∗
p 0

rsr
∗
s − rpr

∗
p rsr

∗
s + rpr

∗
p 0

0 0 2Re
{
rsr

∗
p

}

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
ρs + ρp ρs − ρp 0

ρs − ρp ρs + ρp 0

0 0 2Re
{
rsr

∗
p

}

⎤
⎥⎥⎥⎥⎦
(26)

The Stokes vector arriving at the sensor can then be expressed:

�S =
1

2

⎡
⎢⎢⎣τa

⎡
⎢⎢⎣F̂

⎛
⎜⎜⎝
Ld

0

0

⎞
⎟⎟⎠+

(
1− F̂

)⎛⎜⎜⎝
B(Te)

0

0

⎞
⎟⎟⎠
⎤
⎥⎥⎦+

⎛
⎜⎜⎝
La

0

0

⎞
⎟⎟⎠
⎤
⎥⎥⎦ . (27)

This simplifies to Equation 25 with a little algebra. Both of these derivations, however,

assume AoP = 0. It is also necessary to consider when the sensor zero degree polarizer

angle is not aligned in the plane of reflectance. As the sensor rotates about its optical

axis, the relative quantites of S1 and S2 change. With this consideration the complete
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Stokes vector can be described:

�S =

⎛
⎜⎜⎜⎜⎝
τa(ν̄)

[
1
2
(ρs(ν̄, θ) + ρp(ν̄, θ)) (Ld(ν̄)− B(ν̄, Te)) + B(ν̄, Te)

]
+ La(ν̄)

1
2
τa(ν̄) (ρs(ν̄, θ)− ρp(ν̄, θ)) (Ld(ν̄)− B(ν̄, Te)) cos 2φ

1
2
τa(ν̄) (ρs(ν̄, θ)− ρp(ν̄, θ)) (Ld(ν̄)− B(ν̄, Te)) sin 2φ,

⎞
⎟⎟⎟⎟⎠ (28)

where φ is the AoP.

2.6 Ellipsometry

Ellipsometry is a technique that seeks to measure material properties, namely the

complex index of refraction, by observing changes in the polarization state of light

when reflected off the material surface. Ellipsometry can be used for other applica-

tions as well, such as estimating the thickness of a thin film of material on a bulk

substrate, but these are outside the scope of this project and thus won’t be discussed

here. The name ellipsometry derives from the ellipse that is formed over time when

observing x- and y-components of electric field at a fixed position. Analyzing the

polarization ellipse requires that both the phase and amplitude of the components of

the electric field be measured. The fundamental equation of ellipsometry is

ρe =
rp
rs

= tanψeiΔ, (29)

where rp and rs are the Fresnel reflection coefficients expressed above. tanψ represents

the amplitude of the complex reflectance ratio, ρe, and Δ is the phase. [29]

There are many different varieties of ellipsometer, one of the most basic is the null

ellipsometer. This uses either the PCSA (Polarizer-Compensator-Sample-Analyzer)

or PSCA (Polarizer-Sample-Compensator-Analyzer) configuration. The compensator

is usually a quarter-wave plate. The polarizer is adjusted such that the sample is
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illuminated with elliptically polarized light in such a way that the reflected light is

linearly polarized. The reflected light can then be completely blocked by the analyzer,

giving the ”null” condition. It is important to properly search the parameter space,

because numerous ”pseudo-nulls”, i.e. local minima, may be present. Based on the

orientation of the polarizer, quarter-wave plate and analyzer at the null condition,

ψ and Δ can be calculated. From there, the Fresnel reflection coefficients can be

determined and index of refraction can be solved for. [30]

In this work, a JA Woollam [31] rotating analyzer ellipsometer was used to deter-

mine the ”true” index of refraction to compare against. A rotating analyzer ellipsome-

ter works by illuminating a target with linearly polarized light generate by passing

light from an unpolarized source through a linear polarizer. The light reflected off

the sample will be elliptically polarized. The analyzer portion of the instrument

is continuously rotated to measure the elliptical polarization. A Fourier transform

spectrometer (see next section for more information) is used to measure the spectral

variations of the polarization signature being analyzed. To mitigate the effects of

noise, different models are used to describe the spectral variation of the ellipsometry

measurements. The model used will depend on the type of material being observed.

Additionally, multiple measurements can be taken from multiple viewing angles to

further constrain the solution.

2.7 IFTS

Imaging Fourier Transform Spectrometers (IFTS) capture an image of a scene

with spectral information at each pixel. Essentially, the system can be described as a

broadband camera viewing a scene through a Michelson interferometer. A Michelson

interferometer passes incoming light through a beam splitter, where it is partially

reflected and partially transmitted through. Each beam is then reflected off of a
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mirror and passes through the beam splitter again. The two beams recombine and

interfere with one another. One of the mirrors is fixed while the other is moved and

images of the scene are taken at a number of different, equally spaced mirror positions.

As the mirror moves, the two beams will travel different path lengths. A schematic

of this is shown in Figure 3.

Beamsplitter

Ray 1

R
a

y 
2

Interference

Movable Corner 
Cube

Fixed Corner 
Cube

Optical Path 

Difference (OPD) 0

MICHELSON 

INTERFEROMETER

Collimating 
Optics

FPA

Imaging 
Optics

Figure 3. Basic schematic of an imaging Michelson interferometer. Incoming light is
split into two beams, then each beam is reflected off a mirror. The difference between
the distance the two beams travel determines how they interfere when recombined. A
camera image is taken at a number of different optical path differences to generate an
interferogram at each pixel.

When the path difference is an integer multiple of wavelength, light at that wave-

length will constructively interfere; when path difference is a half integer multiple,

light will destructively interfere. For a single wavelength, this will create a sinosoidal

pattern in time as the mirror is moved. Broadband light contains a continuum of
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different wavelengths each with a different sinosoidal frequency. The combination of

these sinosoids generates what is known as an interferogram. Peak intensity occurs

when both mirrors are equidistant from the beam splitter. At this point, known as

the zero path difference (ZPD) point, light of all wavelengths constructively interfere.

The further from ZPD the mirror scans, the greater the spectral resolution that can

be measured.

Taking the Fourier transform of this interferogram gives the amplitude of sinosoidal

functions, at a number of different frequencies, required to produce the interferogram.

This gives the spectrum of the light as measured by the detector. Because the camera

responds differently to different wavelengths, this is not necessarily the spectrum of

the light arriving at the focal plane. Additionally, in the LWIR, the instrument itself

is emitting light that is measured by the camera. To compensate for these effects,

and recover the radiance arriving at the instrument aperture, a calibration must be

performed.

2.8 Instrument Calibration

To understand instrument calibration, it is first necessary to understand how the

detector actually measures radiance. Integrating over the projected area of the source

gives a radiant intensity, I, which gives energy arriving at the detector per solid angle.

For extended objects, the solid angle is dependent on the optics of the sensor and the

size of the pixels on the focal plane array (FPA). Integrating intensity over the solid

angle gives the energy flux, Φe, on a single pixel. Photon flux, Φq, can be related to

energy flux via dividing by the energy per photon, E = hc
λ
; where λ represents the

wavelength of the light being measured. The FPA is composed of a semi-conductor, in

the case of the instrument used in this research, Mercury-Cadmium-Telluride (MCT).

When a photon with energy greater than the bandgap of MCT hits the FPA, there’s
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a probability that it will be absorbed, exciting an electron from the valence band to

the conduction band in the process. The camera collects photons for a set amount

of time, known as the integration time, and the excited electrons are collected in a

potential well. The camera measures the number of electrons collected by each pixel

to generate an image of the scene. The Telops instrument used in this research uses

16-bit digitization to turn these electrons into digital counts which are stored in image

files. The purpose of calibration is to take this measured signal in terms of digital

counts and convert it back to a radiance value.

The method for radiometrically calibrating the Telops Hyper-Cam used in this

work is outlined in [32]. A measurement of two blackbodies, set to distinct temper-

atures, is taken immediately after measuring a scene. The blackbody temperatures

are chosen so the band-integrated radiance of one blackbody is lower than the scene

radiance, while the radiance of the second blackbody is greater. This enables the de-

termination of each pixel’s spectral response (G for gain), as well as the self emitted

radiance of the instrument (O for offset):

G = YBB2−YBB1

LBB2−LBB1

O = YBB2

G
− LBB2.

(30)

Y signifies the digital counts measured by a single pixel and L represents the radiance

of the blackbody source being observed. Note that either blackbody can be used in

calculating the radiance, but the hotter blackbody is usually chosen because greater

radiance generally means a higher signal-to-noise ratio (SNR). The scene radiance

can then be expressed:

LSCN =
YSCN

G
−O. (31)

Figure 4 shows what the image of a sample scene looks like before and after radio-

metric calibration.
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Figure 4. Band-averaged radiance image before (left) and after (right) radiometric
calibration using two blackbodies.

Because of the nature of MCT FPA manufacturing, there are a number of ”bad”

pixels on the array. These pixels may have no response to incident radiation, or

they may always be saturated. Additionally, pixels can have brief periods where

their gain randomly spikes or dips. To correct for this, pixels that are more than six

standard deviations from the mean of the entire image when observing the on-board

blackbodies are flagged as bad and corrected. The correction replaces these pixels

with an average of their eight nearest neighbor pixels. If one of the nearest neighbors

is also a bad pixel, then that pixel is ignored in the averaging. Figure 5 shows a

band-averaged radiance image after the bad pixel correction has been applied.

Due to unknown effects, potentially from the Read-out Integrated Circuit (ROIC),

a checkerboard-like pattern is visible in broadband radiance images, shown in Figure

4. This effect is magnified when observing polarimetric quantites, because differences
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Figure 5. Band-averaged radiance image before and after bad pixel correction.

of radiance measurements are taken, meaning small relative changes in radiance can

become large relative to the polarimetric signature of objects being observed. In

order to mitigate this issue, a Gaussian notch filter is applied to the radiance images.

The 2-D FFT of the image is multiplied by a filter which reduces the effects of high

frequency vertical, horizontal, and diagonal components. Then, the inverse FFT is

taken to recover the original image without the checkerboard. This does reduce the

spatial resolution of the image, but for most applications in this research, spatial

resolution is not the primary concern. Figure 6 shows the original image, 2-D FFT

of the original image, filter used, and the corrected image.

Because the back surface of the polarizer used in the sensor is not perfectly flat,

the image of a scene moves on the FPA as the polarizer rotates. The effect is small,

usually only a couple pixels, but without correction, this creates a large, artificial

polarization signature near the edges of objects in a scene. To correct for this, an

image registration technique is implimented which minimizes the difference between
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Figure 6. Band-averaged radiance image with checkerboard is shown in the upper left.
The 2-D Fourier transform of the image is shown in the upper right. The red arrows
denote peaks which are artifacts of the checkerboard pattern. The lower right shows
the mask (blue is zero, red is 1) that is multiplied by the Fourier transform of the
original image. The inverse Fourier transform is then taken to get the final image with
the checkerboard pattern removed shown in the lower left.
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two S0 measurements. As the polarizer rotates, a particular point in the scene should

trace out a circle on the FPA. By solving for how much to shift the S0 images, in

order to minimize the difference between the two, the radius and phase of this shift

can be determined. This is used to register each polarizer angle image back to the 0

degree polarizer angle image. Figure 7 shows what the S1 image of a scene looks like

before and after image registration.

In addition to a radiometric calibration, the polarimetric response of the instru-

ment must also be calibrated. Assuming the linear polarizer mounted to the front

of the instrument is ideal, the radiometric calibration described above, performed at

each polarizer angle measured, is sufficient [33]. The polarizer is not ideal, however,

so an additional calibration is needed. Unlike the radiometric calibration, which is

done for every test, polarimetric calibration only needs to be done once. This work

was partially completed by Capt. Joel Holder [34] using a method for calibrating

polarimeters outlined in [35].

The concept is to send known polarization states into the instrument and deter-

mine the polarization state measured by the instrument. Measurements of N unique,

and known, scenes are taken at M different polarizer angles. The measured radiances

are collected into an M ×N ”channel” matrix, Lm. The true Stokes vectors for each

scene are collected into a 3×N matrix, Ls. Note again that the circular polarization

component is ignored. The system matrix, W is defined W = LmL
+
s , where L+

s is

the psuedo-inverse of Ls. The psuedo-inverse of W gives the data reduction matrix

R, which is used to calibrate measured channel vectors into calibrated scene Stokes

vectors. While this calibration has been done for portions of the FPA, it has yet to

be completed for the entire image.
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Figure 7. Band-averaged S1 image of a sample scene before (left) and after (right)
registering each polarizer angle image together. Note the artificial polarization at the
edges of the object in the first image.

2.9 Summary

In this section, the theoretical basis for this work was presented. The primary

concept of this work is that by using physics-based models to describe the spectral

variation of the index of refraction, the polarimetric-hypspectral radiance can be

described using far fewer parameters than the number of spectral bands measured.

This work focuses exclusively on smooth surfaces so the Fresnel equations can be used

to relate index of refraction to reflectance and emissivity. For rough surfaces, a more

detailed reflectance model would be required. Information about the sensor as well

as the procedure for calibrating it were also presented in this section.
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III. Literature Review

Hyperspectral and polarimetric imaging are both fields which have been exten-

sively studied, with thousands of papers available. Almost all of this work, however,

has examined these two modalities independently. The intent of this chapter is to give

an overview of some of the most common techniques in both fields, as well as some of

the limitations. The chapter starts with a brief overview of disturbed earth detection.

This is included because there is another effort, using the same instrument, underway

to use the spectral-polarimetric signature of soils to detect recent disturbances. After

that is a section reviewing the use of polarimetry for surface normal estimation and

3D scene reconstruction. While the primary focus of this research will assume that

scene geometry is known, it is important to understand how scene geometry can affect

polarization. Because of the interplay between index of refraction and surface normal

angle on the polarimetric signature, this research could be adapted to improve 3D

scene reconstruction as well.

Next, some of the common target detection techniques, using hyperspectral or

polarimetric imaging, will be reviewed. Target detection can thought of as the first

step in material classfication, and work related to this research may enhance target

detection. Then, common material classification techniques, again using either hy-

perspectral or polarimetric imaging, will be described. Finally, some of the existing

methods for estimating index of refraction will be discussed. Each of these meth-

ods include pieces which will be useful in the index of refraction retrieval technique

presented here, but none contain all of the elements incorporated into this research.

The primary goal of this research will be to retrieve an index of refraction spectrum

without the impractical, and sometimes impossible, a priori constraints required by

these methods.
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3.1 Disturbed Earth

One area of interest for combining polarimetric and hyperspectral imaging has

been detecting buried mines and IEDs. Some methods focus on how the spectral and

polarimetric signature of ground that has been recent dug up differs from undisturbed

soil [36]. It was found that fine grain silicates become less reflective and more emissive

in the LWIR silicon dioxide reststrahlen band, which is a spectral feature due to a

Lorentz oscillator resonance (see Section 2.2). As a result, smaller grains have a

lower thermal contrast, which decreases the polarization. Larger grained soils are

characteristic of undisturbed soil, so this contrast is useful in detecting soil that has

recently been disturbed.

El-Saba and Bezuayehu demonstrated that fusing radiance images with angle of

polarization images significantly improved the probability of detecting landmines.

For a 10% probability of false alarm, the S0 image yielded a probability of detection

of 30%, examining angle of polarization increased this to 60% and looking at the

fused image gave a probability of detection of 70%. Finally, they looked at using

different proportions of S0 and angle of polarization in the fused image and found

that probability of detection could be increased to 80% by optimizing the relative

amounts of the two factors [37].

Another effort used hyperspectral and polarimetric information to improve con-

trast between partially or fully exposed mines and the background. Overall, the

soils they examined had a very low polarization, so they used polarization to detect

the mines themselves. They also used a few decoy targets such as a frisbee. Their

results showed that the combination of polarimetric and hyperspectral information

significantly improves the effectiveness of their technique [38].
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3.2 Surface Normal Estimation

Another area of recent interest has been using polarization for 3D scene recon-

struction. The basic postulate is, if the index of refraction is known, the elevation

angle of the sensor, with respect to the surface normal, can be determined using the

Fresnel equations. The vast majority of work available in the literature has been

done in the visible, and at one wavelength. An issue with using only a single wave-

length is there can potentially be two different surface normal angles with the same

polarization signature. Figure 8 shows an example of how DoLP can vary with angle.

Virtually all scenarios exhibit this shape which clearly demonstrates that two angles

can produce identical DoLP. Including multiples spectral points with different n and

κ will constrain this problem providing a unique solution. Additionally, incorporat-

ing additional spectral points may help to mitigate error due to noise in the DoLP

measurement.

Figure 8. DoLP as function of surface normal angle for n = 1.5 and κ = 1.
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Atkinson and Hancock developed a method that combined shape-from-shading

and polarimetry to estimate shape [39], [40]. Their method images a smooth di-

electric surface at two different angles, with a known illumination source position.

The reflectance function, essentially a simplified version of a BRDF, is estimated

from image statistics. With the reflectance function estimated, and with a known

index of refraction, the polarimetric signature can be predicted as a function of angle.

Any light that penetrates the surface before being reflected back out is assumed to

be completely depolarized. An algorithm is then employed to find the angle that

best matches the measured signature from the two views. Because of the constraints

needed, this method would be difficult to implement on a remote sensing platform.

Miyazaki and Saito, et. al. proposed a way to deal with internal reflections when

observing a partially transparent material using inverse raytracing [41], [42], [43], [44].

Raytracing uses the surface normal and index of refraction to determine how a ray of

light would pass through a material. There is no closed-form solution to the inverse

problem, but an iterative technique was proposed. As with the previously mentioned

method, the surfaces are assumed to be optically smooth. Another assumption is

that the back surface of the material is flat. To start, an initial shape is assumed and

the gradient of the surface at each point is calculated. An error function is measured

based on two-norm of the difference between the predicted and measured polarization

across the surface. New gradients are calculated by subtracting, from the previous

iterations calculated gradients, a factor proportional to the partial derivative of the

error function with respect to the original gradients. These new gradients are used to

calculate a new object shape. The iteration stops when the error function integrated

over the entire surface is minimized.

Gartley et. al. attempted to use polarimetry to determine pose information of

unresolved (sub-pixel) targets, using a broadband sensor in the LWIR [45]. In this
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work, a car was modeled using previously measured polarimetric reflectance functions

for paint, metal, rubber and glass. The car was modeled in DIRSIG to determine the

predicted polarimetric signature. The vehicle was modeled at a number of different

zenith and azimuth angles. This was linearly interpolated to generate a target space as

a function of these viewing angles. Their results, however, were disappointing, which

they attributed to not properly accounting for adjacency effects of other objects in

the scene.

A LWIR model was developed by Reid et. al. to determine how errors in the

assumed values for surface roughness and index of refraction affected the surface

normal estimation [46]. Their model used the Torrance and Sparrow BRDF model,

adapted to include polarization [47]. They found that in order to estimate angles to

within a couple degrees, surface roughness and index of refraction had to be known

to within 5% of their true value.

Other uses of shape estimation using polarimetry found in the literature include:

quality assurance of optical elements [48], active illumination techniques [49], ex-

tending this concept to out-of-plane scattering for rough surfaces [50], and using two

camera stereo imaging [51], [52]. All of these works, however, only deal with broad-

band polarimetry. By including hyperspectral information, additional constraints can

be placed on the estimations of surface normal.

3.3 Hyperspectral Target Detection

While the primary focus of this research will be classifying and identifying mate-

rials, rather than detecting them, the principles used in characterization can also be

useful in detection, and vice versa. Detecting an object can be thought of as the first

step in characterizing it, so detection techniques are of interest to this research. Both
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polarimetry and spectroscopic techniques can be of use in detection; to start, some

hyperspectral methods are discussed.

One of the most widely used hyperspectral target detection techiniques is the RX

algorithm proposed by Reed and Xiaoli as a way to detect anomalies in a scene.

[53] The algorithm works by examining two groups of pixels, called windows, and

computing the mean spectra of pixels within each window. One window is chosen

to be the expected size of the target in the image, while the second larger window

surrounds the first and is used to estimate the local background. The background

covariance matrix is calculated from the statistics of the local background pixels.

This is assumed to be the same as the target covariance matrix. The result of the

RX-algorithm is

RX(r) = (r− μb)
TC−1b (r− μb), (32)

where r is the pixel spectra, μb is the mean spectra of the background, and Cb is the

covariance matrix. If this gives a result greater than some pre-defined threshold, the

pixel is flagged as a target. [54]

Subspace matched detectors represent a step up in complexity from the RX algo-

rithm. The central concept underlying subspace matched detectors is that there may

be some variability in the signature of a target based on scene geometry, illumination

conditions, weathering, etc. To account for this, a target subspace is developed where

the basis vectors represent different types of variance. The key is to have some un-

derstanding of the potential variations in the target signature and model them well

enough so the subspace is small enough to limit false alarms, but large enough to

detect the target under all conditions. Note that one potential variation in the sig-

nature could be changes in reflectivity or emissivity with viewing angle as discussed

in the previous section. This variablity will increase the size of the subspace needed
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to describe a material making it more difficult to detect without increasing the false

alarm rate. [55]

One example of a subspace matched detector was developed by Healey and Slater,

using a physical model to attempt to extract material reflectance from radiance data,

which is then compared to some exemplar of a material. The atmosphere was modeled

with four separate standard atmosphere profiles, four different water vapor profiles,

four different profiles for other gases, and four aerosol profiles, for a total of 256

different atmospheric models. There were also eight different solar zenith angles,

seven sensor altitudes considered, and a binary parameter for whether the object was

in shade or not. This gave 28762 different conditions, but only 17920 were physical

feasible. For each of the 17920 conditions, an expected radiance was calculated based

on the reflectance exemplar. For each pixel in the scene the maximum likelihood it

belongs to a class is calculated and if it exceeds some threshold, the pixel is identified

as the material from which the reflectance exemplar was taken. [56]

Another class of popular techniques are spectral change detectors, which seek to

find differences in a scene based on two or more observations. This seems fairly simple,

but it is important to discriminate changes that are actually of note from changes

that are due to natural variation in the scene from one time to the next. Additionally,

changes in atmospheric parameters can make it appear that there are changes in a

scene when there really are not. Finally, it can be very difficult to take two consecutive

images of the same scene from the same position, so image registration is necessary.

Any misregistration will be observed as a difference in the two scenes [57].

One way to account for some of these effects is to incorporate a model to detect

changes in reflectance or emissivity at a pixel, rather than simply radiance. Meola et

al proposed a model based approach for visible and NIR imagery [58]. They modeled
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the sensor radiance at a pixel as

L(λ) = ρ(λ) [ατ(λ)Ls(λ) cos θ + βτ(λ)Ld(λ)] + Lp(λ) + n(λ), (33)

where ρ is the material reflectance, τ is the transmission of the atmophere, Ls and Ld

are the direct and indirect solar illumination on the target respectively, Lp is the path

radiance, and n is the sensor noise. α and β are shadowing terms meant to account

for variations in illumination from image to image. Objects in the scene are assumed

to be Lambertian, so there is no angular dependence of reflectance.

This problem has more unknown parameters than available measurements, how-

ever, so MODTRAN is used to model the spectral behavior of atmospheric transmis-

sion, path radiance, as well as direct and indirect solar illumination. Modeling the

atmosphere allows these quantities to be calculated spectrally based on a handful of

quantities related to weather conditions, solar and sensor positions. With this and

a model of sensor noise, all the parameters can be solved for using two images of a

scene.

The two hypotheses to test at each pixel, m, are:

H0 : ρ(1)[m] = ρ(2)[m]

H1 : ρ(1)[m] �= ρ(2)[m].

(34)

The likelihood a pixel is a target is expressed

D(t)[m|x] =
(
L(t)[m]− μ

(t)
0 [m|x]

)T (
Γ
(t)
0 [m]

)−1 (
L(t)[m]− μ

(t)
0 [m|x]

)
. (35)

L(t)[m] is the measured radiance at time t for a pixel, μ
(t)
0 [m|x] is the expected mean

radiance based on the model parameters, x, and Γ
(t)
0 [m] is the noise covariance matrix

which is assume to be known. The system is then optimized to minimize the sum
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of the likelihood function across all pixels and times. Note that in order for the

optimization to work, even with only one atmopheric parameter, at least five spectral

bands are needed. In practice, more are required to accurate model the atmospheric

effects. Once the optimization is performed, the likelihood is calculated for each pixel

and if it results in a value above some threshold, the pixel is flagged as a target.

The class of techniques which are most related to this research are signature

matched detectors. As the name suggests, signature matched detectors attempt to

find spectra in a scene that resemble a reference signature for some target. The ba-

sic principle is to create two classes which obey gaussian statistics; one for the null

hypothesis, i.e. no target present, and another for the alternative, target present,

hypothesis. The probability that a given spectra belongs to either class can be cal-

culated and if it is above a certain threshold, the corresponding pixel is flagged as a

target.

One of the earliest of these methods was the spectral angle mapper (SAM), which

treats the target and measured spectra as vectors in a space with dimensionality

equal to the number of spectral points. The angle between these two vectors is then

calculated

cos(α) =

(
t · r

‖t‖ · ‖r‖
)
. (36)

t and r represent the assumed target and measured spectra. If this value is sufficiently

close to unity, the two spectra are similar enough and the pixel is flagged as a target.

[59]

There are problems with the spectral angle mapper, however. First, SAM cannot

distinguish between negative and positive correlation. For example, if the expected

target spectra is [7 , 6 , 5 , 6 , 7] and the measured spectra is [5 , 6 , 7 , 6 , 5], the

SAM value would be 0.97. These spectra clearly are not close to the same, however,

because they are inversely correlated. Additionally, the SAM cannot distinguish
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intensity differences between spectra. Sometimes this is an advantage as the same

target under varying illumination conditions will always be detected. At other times,

however, different intensity levels can be an indication of two different materials.

One proposed improvement was the spectral correlation mapper. This relied on

the a varient of the Pearsonian correlation coefficient, expressed

R =

∑N
i=1(ti − t̄)(ri − r̄)√∑N

i=1(ti − t̄)2
∑N

i=1(ri − r̄)2
. (37)

This does not change the ability to distinguish intensity differences, but it does allow

the correlation value to go negative indicating an inverse correlation. For the case

presented in the previous paragraph, the correlation coefficient would be negative

one, so the spectra in question would not be incorrectly identified as a target. [60]

The spectral match filter (SMF) accounts for both spectral and overall intensity

differences. In this case, the detection metric is

dSMF (r) =
(t− μ)TΣ−1((r− μ)

(t− μ)TΣ−1((t− μ)
. (38)

t and r again represent the expected target and measured spectra respectively. r is

equal to the background, b, for the null hypothesis, and r = αt + b when a target

is presents. α denotes the abundance of the target in the pixel. μ and Σ represent

the mean vector and covariance matrix of the background. The background can be

calculated using either the entire image or pixels in a smaller window centered around

the pixel being interrogated [23].

Possibly the most commonly used signature matched detector is the adaptive

cosine/coherence estimator (ACE) [61]. This is very similar to the SMF, but is

adapted so target pixels are modeled to have some abundance of background as well
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as target signatures. The detection metric is

dACE(r) =

[
(t− μ)TΣ−1((r− μ)

]2
[(t− μ)TΣ−1((t− μ)] [(r− μ)TΣ−1((r− μ)]

. (39)

Again, t and r represent the expected target and measured spectra respectively. Now,

however, r = αt+βb, where β is the background abundance, when a target is present.

3.4 Polarimetric Target Detection

Because most natural materials display relatively little polarization, polarimetry

can be particularly useful in detecting man-made targets. There are numerous exam-

ples in the literature, [28, 62, 63, 64, 65, 66, 67, 68, 69] to name a few, demonstrating

how polarimetry can aid in target detection. In the interest of time, these will not be

discussed in detail, but a few others will be focused on here to give a general idea of

what these techniques entail.

The fringe-adjusted joint-transform correlation algorithm attempts to detect tar-

gets by comparing an image of the scene to a reference image. To start, the scene

image is resized to match the scale of the reference image, then the two images are

registered together. r(x, y + y′) is used to denote the reference, while t(x, y − y′)

represents the input image. The input joint image is expressed

f(x, y) = r(x, y + y′) + t(x, y − y′). (40)

The 2-D Fourier transform of this joint image is taken yielding

F (u, v) = |R(u, v)|eφr(u,v)e−iuy
′
+ |T (u, v)|eφt(u,v)e−juy

′
, (41)

where |R(u, v)| and |T (u, v)| are the amplitudes of the Fourier transform of r and t,

37



www.manaraa.com

while φr and φt represent the phases. The joint power spectrum is the magnitude

squared of F (u, v). A fringe-adjusted factor is defined

Hfaf (u, v) =
B

A+ |R(u, v)|2 , (42)

where A and B are constants adjusted to improve the correlation. Hfaf (u, v) is mul-

tiplied by |F (u, v)|2 to give the fringe-adjusted joint power spectrum. The inverse

2-D Fourier transform is then taken. If the scene and reference image are identi-

cal, there will be peaks at ±2y′, any other peak in the image represent potential

targets. Results have shown that performance metrics are significantly improved by

incorporating polarization images into the algorithm. [70]

Another category of polarimetric target detection in the literature uses fusion im-

ages. The high-boost fusion method assigns varying weights to different information

about an image before fusing the images together and running a detection algorithm

on the fused image. One example was proposed by El-Saba and Sakla [71] which

weighted polarization-based images of the scene more heavily than the total radiance.

Two different boosted images were used: one which added two times the S1 image to

the S0 image, and another was composed of five times the angle of polarization image

added to two times the S0 image. The factors for each bit of information which yielded

the best performance metrics were used. The FJTC algorithm was then applied as

above, however the fringe-adjusted factor was changed to a ”Mexican-hat wavelet”

which is the second derivative of the Gaussian function. It was found that the angle

of polarization and S0 fused image performed the best, significantly improving the

detection metrics over the S0 image alone. [71]

Another fusion detection algorithm is the spectral/polarimetric integration (SPI)

decision fusion algorithm, which combines two previously developed algorithms. [72]

The first is the constrained energy minimization (CEM) algorithm, which is a modified
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version of the SMF algorithm discussed in the previous section. For a measured

spectra x, the CEM score is given

CEM(x) =
(t−m)TS−1(x−m)

(t−m)TS−1(t−m)
. (43)

t is the spectra of the target; m and S represent the mean spectra and covariance

matrix of the background [73].

The second algorithm used is the topological anomaly detection (TAD) algorithm,

which first normalizes the image so the brightest 10% of pixels have a Euclidean two-

norm equal to two, while the darkest 1% of pixels have a norm equal to one. Then,

a random sample of pixels is taken and the distance between every pair of chosen

pixels is computed. Large groups of points are designated as background, while small

groups or isolated pixels are identified as potential targets. The TAD score for each

pixel is the sum of the distances to its third, fourth, and fifth nearest neighbors [74].

The SPI algorithm uses the CEM score of the spectral information and the TAD

score of the polarimetric information. The total SPI score for a pixel x is given

SPI(x) = CEM(x) [CEM(x) + TAD(xs)] , (44)

where x is the measured spectra and xs is the measured Stokes vector. It has been

shown that incorporating the polarization dramatically improves detection perfor-

mance in visible imagery when the sensor is near the specular lobe for solar reflection.

Performance degraded as the sensor moved away from the specular lobe, however. [72]

The adaptive polarimetric target detector seeks to improve existing target detec-

tion algorithms by determining the optimal set of polarizer angles for target detection

in a given scene. First, a Stokes vector image of the scene is measured using some

standard method, such as the modified Pickering method. The mean Stokes vector
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and covariance matrix can then be calculated from the data. The measured scene

intensity covariance matrix, ΣI , can then be estimated

ΣI = MTΣSM + Σn
I , (45)

where M is a matrix whose rows are mi = 0.5[1 , cos 2θi , sin 2θi] and Σn
I is the

covariance matrix for the noise in the instrument. θi is the polarizer angle. A target

mean Stokes vector is assumed to be known, and the Stokes covariance matrix, ΣS,

can be calculated based on an assumed knowledge of the scene intensity covariance

matrix, ΣI . The detectability of the target is estimated

SCR2
V = (μt − μb)

TΣ−1V (μt − μb). (46)

Subscript v represents the vector space in which the detection is performed. μt and μb

represent the mean vector of the target and background respectively. The combination

of polarizer angles that maximizes SCRV is then found and another set of images

of the scene is taken at those polarizer angles. From here, some target detection

algorithm can be used to find targets in the scene. [75]

The final polarimetric target detection technique discussed here is the M-Box

covariance equality test which attempts to find targets by comparing the covariance

matrix for some part of the image to a reference covariance matrix. Romano and

Rosario applied this method to a scene with three tanks at different orientations.

[76] They chose a seven pixel square window to use. They found that natural clutter

tended to have the smallest variance, so they chose the reference window to be the

7x7 window across the entire image with the smallest covariance. The discriminate

function is

− 2 logM = v log |Σ1|+ v log |Σ2| − 2v log

∣∣∣∣Σ1 + Σ2

2

∣∣∣∣ , (47)
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where Σ1 is the covariance across the test window and Σ2 is the covariance across the

reference window. A window with an identical covariance to the reference will give a

value of zero. Some threshold is defined and if the M-value for a given window exceeds

this, the pixel at the center of the window is idenified as a target. This algorithm was

shown to out-perform a version of the RX algorithm adapted to polarimetry. [76]

3.5 Temperature-Emissivity Separation Algorithms

While detecting a target based on differences from its surroundings is useful, iden-

tifying something often requires information more fundamental to the material, such

as its reflectivity or emissivity. Two primary factors describe the emitted radiance

from a material: the temperature of the material surface and the emissivity. For a

hyperspectral sensor with N spectral channels, this means there are N+1 unknowns,

assuming all other variables in the scene are known. Consequently, determining the

temperature and emissivity of a target is a fundamentally underdetermined problem.

The purpose of temperature-emissivity separation (TES) algorithms is to estimate

one or both of these parameters by imposing some constraint on the data. Several of

these approaches will be discussed, but note that there are numerous others available

in the literature: [77, 78, 79, 80, 81] to name a few.

The earliest approach, found by this author, to solving the TES problem was the

reference channel method [82]. It is assumed that the emissivity value in one spectral

band is known, and from this a temperature is calculated. The temperature value is

then used in conjunction with measured radiance values to calculate the emissivity in

the rest of the bands. The obvious issue with this routine is if emissivity in one band

is already known, there often isn’t a lot of utility in determining emissivity in the rest

of the bands. This method is only useful for distinguishing groups of materials that

have known, and similar, emissivity values in a given spectral band.
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Another early technique was the normalized emissivity method (NEM) [83], which

also assumes one spectral emissivity value is known. Unlike the reference channel

method, it is not assumed which spectral band this known emissivity value represents.

First, an emissivity value is chosen and temperatures are calculated using the radiance

data in each band and assuming this emissivity. The largest calculated temperature

is taken to be the temperature of the scene. Finally, emissivity values in all bands are

calculated using this temperature and the measured spectral radiance values. Clearly

the band which calculated the highest temperature will then have the same emissivity

value as the input guess, which effectively reduces the dimensionally of the problem

by one. This works in regions where a priori knowledge of the scene is available, for

example, the class of minerals likely to be observed. It is of limited use, however, in

applications where spectrally diverse targets need to be identified.

The alpha residual method [84] uses Wien’s approximation, which neglects the -1

in the denominator of the planckian radiance equation, in order to derive a linear set

of equations to solve for emissivity. The radiance equation, after compensating for

atmospheric effects and downwelling radiance, becomes

Lj = εj
C1

λ5
jπe

C2
λjT

; (48)

where C1 and C2 are constants which depend on the speed of light, Boltzmann’s

constant, and Planck’s constant. j indexes the specific waveband being measured.

Taking the natural log of both sides and multiplying by λj gives

λj lnLj = λj ln εj + λj lnC1 − λj5 lnλj − λj ln π − C2

T
. (49)

Then, the average of over all spectral points is taken and subtracted from Equation

49. It’s clear to see that since the temperature dependent term is not wavelength
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dependent, it will drop out. The equations are rearranged so the emissivity dependent

terms are on one side of the equation and a new parameter, αj, is introduced:

λjεj − 1

N

N∑
j=1

λj ln εj = αj = λj lnLj − 1

N

N∑
j=1

λj lnLj +Kj. (50)

Kj has no dependence on measured radiance values, and is defined as

Kj = −λj lnC1+
lnC1

N

N∑
j=1

λj+λj5 lnλj− 5

N

N∑
j=1

λj lnλj+λj ln π− ln π

N

N∑
j=1

λj. (51)

αj can be calculated using the right-hand side of Equation 50 and measured values

of Lj. This can either be compared to lab calculated α values or used to solve for

the emissivity. Using this method, the spectral shape of the material emissivity can

generally be recreated quite accurately. The complication with this routine is, because

the mean is subtracted from Equation 49, the absolute values of emissivity are lost.

In applications where accurate emissivity values and temperatures are necessary, this

method is far less useful. Additionally, using Wein’s approximation will lead to small,

but potentially significant, errors in calculated emissivity values.

The temperature emissivity separation algorithm described in [85] uses a hy-

bridization of a few of the methods discussed above. First, the surface temperature

is estimated using the NEM. The ground emitted radiance is calculated

R = L′ − (1− εmax)Ld, (52)

where L′ is the measured radiance compensated for atmospheric transmission and

path radiance effects and Ld is the downwelling radiance. A temperature is calculated

using the initial guess, εmax, as the emissivity. Again, the maximum temperature

calculated is taken to be the temperature of the scene. With this temperature, a new
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emissivity is calculated

εb =
Rb

Bb(TNEM)
. (53)

The calculated emissivity values are then used to re-calculate the temperature and

the process is repeated until R converges, or the maximum number of iterations is

reached. The second module utilizes the spectral ratio method, which gives relative

emissivities defined

βb =
Nεb∑N
b=1 εb

. (54)

The third step uses the Min-Max Difference (MMD) method described in [86]. This

uses the relative emissivities to solve for the minimum emissivity, which is then used

to solve for emissivity in each band:

MMD = max(βb)−min(βb)

εmin = 0.994− 0.687 ∗MMD0.737

εb = βb

(
εmin

min(βb)

) (55)

The MMD is modified, however, to account for noise

MMD′ =
[
MMD2 − 1.52NEΔε2

]−1
, (56)

whereNEΔε is determined from the Noise-Equivalent Temperature Difference (NEΔT)

of the sensor. The final step is to repeat the above steps once using the improved ε

estimates to recalculate the downwelling radiance used to solve for L′.

With error-free inputs, this algorithm was capable of measuring emissivity to

within 0.015, and temperature to within 1.5 K when five spectral bands were used.

The accuracy of the atmospheric inputs, however, is the limiting factor on the accu-

racy of the algorithm. [87]

To this point, the TES algorithms discussed have been designed for multi-spectral
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data, hyperspectral data introduces more information that can potentially be used to

constrain this problem. One of the most common modern TES techniques is the max-

imum smoothness method developed by Borel [88, 89]. The premise of this technique

is that the emissivity spectra of solid targets tend to be smoothly varying, specifically

when compared with atmospheric spectral features. An initial temperature estimate

is either provided or calculated based on the state of the atmosphere as solved for

by the atmospheric correction. From this, an effective emissivity can be calculated

for a number of temperatures around this temperature. The smoothest emissivity is

selected to be the correct answer. The smoothness metric is

σ(ε) = STDEV

(
εm − εm−1 + εm + εm+1

3

)
m = 2, ...,M − 1 (57)

where M is the number of spectral channels, indexed by m. A TES method based on

this algorithm will be used as a basis for comparison later in this document.

3.6 Hyperspectral Material Classification

Material classification and identification are two of the primary uses for hyper-

spectral information. Classification involves grouping pixels in a scene into categories,

while identification goes a step further and seeks to identify the material each of these

categories represent. In this section, some of the basic classification techniques will

be covered first, then some papers with applications to material identification will be

discussed.

Principle component analysis (PCA) is a way to reduce the dimensionality of a

hyperspectral data set. Hyperspectral measurements tend to have many data points

which are highly correlated. PCA works by taking the correlated original basis set of

spectral points and expressing in terms of a new set of orthogonal ”principle compo-
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nents,” which are linear combinations of the original set. I It is useful when performing

this analysis to think of the hyperspectral data as a matrix with each pixel forming

one dimension of the matrix and the spectral points forming the other dimension.

Performing the singular value decomposition on this matrix, X, givesX = UΣW T .

If X is an n-by-p matrix, then U is an n-by-n matrix of orthonormal column vectors

and W is a p-by-p matrix of orthonormal column vectors. These column vectors

are called the left and right singular vectors of X, respectively. Σ is an n-by-p

rectangular diagonal matrix of positive numbers, where the singular values of X form

the diagonal. The product UΣ represents the hyperspectral data in terms of the

principle components. This means W is a projection matrix that projects X onto the

principle components [90]. PCA can also be thought of as diagonalizing the covariance

matrix, where Σ has the eigenvalues along the diagonal and the columns of U are the

eigenvectors [23].

Σ is customarily rearranged into descending order, and the corresponding vectors

in U and W are rearranged accordingly. The singular values are a representation

of how important each principle component is to reconstructing the true data set.

Often, the first few principle components contain the majority of the information

about a scene. If this is the case, the dimensionality of the data set can be greatly

reduced by truncating the matrices, keeping only the first few singular values and

their corresponding vectors. [91]

K-means is one of the oldest and simpliest classification algorithms. First, a num-

ber of classes is assumed and an initial class mean vector is defined; either based on

a priori knowledge, or chosen at random. Each spectrum, in our case the measured

spectra at each pixel is assigned to the class with the smallest Euclidean distance be-

tween itself and the class mean vector. Other distance metrics are also available such

as the spectral angle, which normalizes all the spectra to look at only relative spectral
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differences instead of absolute intensity differences. Once all of the spectra have been

designated, new class mean vectors are defined based on the average spectrum of all

the pixels assigned to that class. This process is applied iteratively until either the

number of spectra switching classes or the change in the class mean vectors between

iterations is below some threshold. [92]

One issue with this algorithm is that it requires the number of classes to be defined

beforehand. In many applications, the number of different materials is something the

user is seeking to learn from the data, not something available in advance. Addi-

tionally, this algorithm only solves the classification problem, as it does not assign

identities to the classes. With some calibration, spectral signatures can be matched

to a database of materials, but this requires some knowledge of atmopheric conditions

and/or object temperatures.

The Stocastic Expectation Maximization (SEM) algorithm starts by either ran-

doming, or based on some initial classification, assigning the spectra to one of a

pre-defined number of classes. The initial number is considered an upper bound on

the number Benefits of P-HSI over HSI More accurate reflectivity at off-nadir view-

ing likely to be in the scene. For each of the classes, a mean vector and covariance

matrix is calculated. The ”prior” for each set is defined as the percentage of the total

number of spectra contained within a given set. If this is less than some threshold,

the class is eliminated. Based on the class priors, covariance matrices, and mean

vectors, a probability that each spectra belongs to a class is calculated. The spectra

are then randomly assigned to classes again, but this time with weighted probabilities

based on the calculated probability of belonging to a certain class. New priors, co-

variance matrices, and mean vectors are then calculated and the process is repeated

until changes in the probability values are sufficiently small. One drawback of this
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technique is that the solution has been found to be highly dependent on the initial

conditions. [93]

The Improved Split and Merge Clustering (ISMC) algorithm seeks to segment an

image into the number of pattern classes that best represents the data. At first, the

algorithm assumes that every spectra belongs to the same class. The class is searched

through to find the two spectra with the greatest Euclidean distance between them,

which are dubbed ymin and ymax. If this distance is greater than some user-defined

threshold, the class is split and the remaining spectra are divided into classes based

on their Euclidean distance to the reference spectra. This step is applied to each

subsequent class until no class is split. Once this is completed, the mean vector for

all the classes is computed. Classes are merged together if the distance between their

mean vectors is less than some defined threshold. All of the spectra are then assigned

to classes based on their distance to the class mean vectors. The class mean vector

is then updated based on the average of all the spectra assigned to that class. A

”scatter” matrix is defined

Sb =
K∑
k=1

nk(mk −m)(mk −m)T , (58)

where m is the mean vector of all the spectra, mk is the mean vector of the kth

cluster, and nk is the number of spectra in the kth cluster. The trace of this scatter

matrix is taken and then the entire process is repeated until the percent change in

the trace of the scatter matrix is below some tolerance. [94]

Support vector machines (SVM) are a binary classification which seeks the max-

imum separation between two classes. The binary classifier is defined yi ∈ [−1, 1]
which assigns each spectra a -1 or 1 value depending on the class it belongs to. For a

linear classifier of spectra with N measurements, this can be thought of as maximiz-

ing the distance between two N -dimensional hyperplanes, such that no spectra lie in
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between the planes. These hyperplanes are defined

w · x− b = ±1. (59)

The distance between the planes is 2
‖w‖ , so the goal is to minimize ‖w‖. This is

subject to the constraint that yi [w · xi − b] ≥ 1 for all spectra. [95]

Non-linear classifiers can also be used by incorporating a kernel, K. The opti-

mization problem then become maximizing

N∑
i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj), (60)

such that
∑N

i=1 αiyi = 0 and 0 ≤ αi ≤ C, where C is a regularization parameter.

There are many different kernels available, but one common one is the Gaussian

radial basis function

K(xi,xj) = e−γ‖xi−xj‖2 , (61)

where γ is inversely proportional to the width of the gaussian. [95]

There are also a variety of different methods for applying this to more than just a

binary classification. The one-against-all strategy attempts to create maximum sep-

aration between one class and all the others. The one-against-one strategy considers

every combination of class pairs and uses an SVM for each. There are also hierarchi-

cal based approachs that split the original set into classes, then split those subclasses,

etc. [95]

The algorithms discussed above assume that each pixel contains only one material.

In reality, one spectra may have a mixture of different contributions, especially if the

ground sampling distance of a single pixel is large. To account for this, mixing models

attempt to decompose the mixed spectra into pure spectral ”endmembers.” This way
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the dataset can be reduced to a few spectra with relative abundances defined at each

pixel. The simplest of these methods is the linear mixing model.

The fundamental problem can be expressed

x =
M∑
i=1

aisi +w = Sa+w, (62)

where S is a matrix whose columns represent the endmembers spectra, a is the frac-

tional abundance vector, w represents noise, and x designates a measured spectra.

Note that the summation over a cannot be greater than 1. Before endmembers are

determined, the dimensionality of the data is usually reduced using PCA, or some-

thing similar, to make the subsequent computations less time consuming. One way

to determine endmembers is to assign them based on previously measured spectra

representative of different types of materials expected to be found in the scene. For

example, if observing a forest, there may be endmembers associated with different

varieties of tree leaves, bark, soil, etc. [96]

There are also automated methods for determining endmembers. Endmembers

can be determined using some of the previously mentioned clustering algorithms like

K-means, SEM, ISMC, or SVM. They can also be determined geometrically using a

process known as ”shrinkwrapping”. This can be thought of by considering a number

of pixels with only two spectral components, though the idea can be extended to

many dimensions. Each measured spectra would be plotted with one component on

the x-axis and the other on the y-axis. Then, the area of a triangle is minimized,

such that the triangle still contains all measured spectra. The vertices of this triangle

represent the endmember spectra. Often in visible images where different illumination

conditions are present, one of the endmembers will be set as a ”dark” point at 0,0.

Note that these vertices may not correspond to an actual measured spectra, indicating

that no single pixel is purely that one material. For this process to work in higher

50



www.manaraa.com

dimensions, however, there has to be more endmembers then spectral points, which

is why dimensionality reduction is often useful. The final step is known as inversion,

where the relative abundances are calculated from the endmembers. This is usually

done by constrained least squares fitting, ensuring a cannot sum to greater than 1,

and cannot have any members less than 0. [96]

Heiden et al applied a linear unmixing technique to characterize urban surface

materials [97]. Measured endmembers were compared to a spectral library of mate-

rials based on more than 21000 spectra of common construction materials. Material

classification and identification is complicated in urban settings by the wide variety of

potential illumination conditions, as well as weathering of materials. They examined

a number of different features, such as the position and height of reflectance peaks,

the ratio of specific spectral points, and the mean and standard deviation of the data.

They found materials could be accurately characterized, so long as they contained

two or more spectral features. They also found that classification with hyperspectral

imagery performs significantly better than simply gray-scale imagery, as expected.

The technique for target detection developed by Healey and Slater (see Section

3.3) can also be used for material identification. They demonstrated this technique

on a hyperspectral image of Fort Hood measured by the HYDICE sensor. 11 dif-

ferent material classes were selected: nine different roofing materials, asphalt, and

vegetation. From this, different atmospheric permutations were used to calculate a

maximum possible radiance for a given material class. Any spectra above this in-

tensity was automatically ruled out from that class. Then, the likelihood each pixel

belonged to a certain class was determined and the pixel was assigned to the class

with the maximum likelihood. They compared their algorithm to a spectral matching

algorithm based on the Euclidean distance and found theirs to be far more accurate,

specifically at correctly classifying the dark sides of roofs. [98]
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Vaughan et al used LWIR multi- and hyper-spectal imagery to identify mineral

distributions. Many common mineral types have spectral features in the LWIR, so it

is an ideal spectral band for identifying minerals. First, an atmospheric correction,

based on models, was applied to the measured radiance to calculate the radiance at

the surface. The TES algorithm described above was used to solve for the emissivity.

Endmembers were determined using either spectral libraries, manually choosing pixels

in the scene that represented pure spectra, or unsupervised techniques such as those

discussed earlier in this section. The classification was done using both the SAM

and spectral matched filtering. They found that multi-spectral data could determine

whether an area was silica- or clay-rich, but to accurately identify specific minerals,

hyperspectral data was needed. [99]

3.7 Polarimetric Material Classification

While hyperspectral techniques are used far more extensively, there have been

some attempts at using polarimetry for material classification and identification.

Polarization of Water.

Shaw examined the polarimetric properties of water in the LWIR, finding that

the degree of polarization is between 6 and 12% when viewed under a dry, clear

atmosphere [100]. He found several things of interest to this research. First, radiance

from water in the LWIR appear vertically polarized; as opposed to radiance in the

visible and NIR, which appears horizontally polarized. This is because the dominant

radiance source is the self-emission of the water, as opposed to solar reflection. The

idea that the direction of polarization can be used to determine whether a signature

is reflection- or emission-dominated is something that will be exploited later in this

document. The second conclusion of interest is that the degree of polarization depends
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on the radiometric contrast between emission and reflection. Water viewed under a

clear sky was more polarized than water viewed under a cloudy sky. As shown in

Section II, this is a result that is expected based on the theory. Finally, when solar

glint is in the image, the polarization becomes horizontally polarized again. Solar

reflectance is generally considered to be small in the LWIR, but in the case of specular

reflection, it still must be considered.

Classifying Metals and Dielectrics.

In the late 80s and early 90s, Wolff developed a method for distinguishing metals

from dielectric materials using polarization [47, 101, 102, 103]. His approach was

based on the assumption that dielectric surfaces polarize light more strongly than

metal surfaces. This is generally a good assumption as the reflectance of metals, at

wavelengths longer than the UV, is usually very high for both polarization states.

This leads to a minimal contrast between polarization states and thus a minimal po-

larization signature. By measuring a surface at a number of different linear polarizer

angles, he found the maximum and minimum intensity passing through the polarizer.

Then, a ”Fresnel ratio” is defined as Imax/Imin. Anything with a ratio above 2.0 is

classified as a dielectric, while anything below 2.0 is considered a metal. This proce-

dure was shown to be effective for a variety of different scenes, however, it does not

seek to actually identify the materials in the scene, it only classifies them into two

categories.

Tominaga and Kimachi proposed another technique for distinquishing metals from

dielectrics using imaging polarimetry [104]. They examined how the degree of polar-

ization varied spatially around a specular highlight from cylindrical metal and di-

electric surfaces. They found that for dielectrics, the degree of polarization maps

were convex around the specular highlight, while for metals they were flat or concave.
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From this, they were able to create a binary classifier to determine whether a material

was metal or dielectric in nature. Again though, while this is useful to obtain basic

information about a surface, identifying a material usually requires more information

than solely whether it’s a metal or not.

Mueller Matrix Classification.

A group at the AFRL Munitions Directorate characterized the polarimetric re-

flectance properties of six common building materials: rubber, shingle, plywood, dry-

wall, brick, and concrete [105]. They started by measuring the Mueller matrices and

BRDFs of the materials at several different wavelengths between 700 nm and 2.3 μm.

From the Mueller matrices, they extracted information about material reflectance,

degree of polarization, and retardance. They used this information to form feature

vectors, which was passed through a support vector machine classifier (See previous

section) to determine material classes. Measurements of an unknown material are

then classified according to the class that their feature vector most closely resembles.

When using all three parameters of the feature vector, they were able to correctly

classify all six materials at least 89% of the time. In remote sensing applications,

however, it will may be difficult to obtain a priori knowledge of material BRDFs and

Mueller matrices. Basic materials, such as concrete, can have many different compo-

sitions, which will change their reflectance properties. Additionally, the BRDF may

change with how the material surface is finished.

Zallat et. al. proposed another technique using Mueller matrices to classify a

material [106]. Instead of measuring the matricies before hand, they used an active,

polarized, illumination source. They measured the Mueller matrix of the target on a

pixel-by-pixel basis and then cluster the image based on the measured Mueller matrix

components. Classification based strictly on the components of the Mueller matrix
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proved fruitless because certain elements are highly correlated with one another. So,

they used a number of different techniques to decompose the Mueller matrix to extract

information useful to classification. They did not present a quantitative assessment

of the success for their method, but based on the figures in their paper, it appears

to be about 75 % accurate. This method would be much more difficult to implement

in the LWIR, however, because other sources of radiance would have to be decoupled

first. Additionally, is not passive technique, so it requires an active source to evenly

illuminate an entire scene, which may be impractical.

Goldstein and Cox measured the spectral and polarimetric properties of many

different varieties of vegatation in the near-infrared (NIR) [107]. They examined both

reflection and transmission properties at various angles. A full Mueller matrix was

measured by illuminating the sample with different polarization states and measuring

the polarization of the reflected or transmitted light. They found that in spectral

regions where water absorption is strong, the surface looked more mirror like and

the spectral behavior of the leaf were more apparent in the Mueller matrix. They

attributed this to there being a greater portion of the radiance reflected from the

surface as opposed to scattered within the leaf, then reflected back. This scattering

depolarized the light, which makes all but the first element of the Mueller matrix zero.

While they did not seek to classify actual images, they found differences between

plants in some spectrally resolved Mueller matrix components.

Zhao et. al. classified materials based on measuring the Mueller matrix reflectance

of materials relative to some known reference material in the scene [68], [108], [109].

Their work was done in the visible, with only the sun and sky used as an illumination

source. Because of this, they assumed the incident radiance was unpolarized, which

means only three terms of the Mueller matrix need to be solved for. The three spec-

trally resolved elements and two derived elements, degree and angle of polarization, as
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used to classify materials. A support vector machine classifier is used to group pixels

into classes. Classification based solely on the multispectral data is over 99% accu-

rate in sunny conditions, but drops to 55% under cloudy conditions and under 50%

in the dark. Classification based on both spectral and polarimetric Mueller matrix

reflectances greatly improve the accuracy under cloudy and dark conditions, 91 and

83% respectively, though accuracy in sunny conditions is reduced to 95%. While this

demonstrates the utility of combining hyperspectral and polarimetric classification

parameters, in a typical scenario, it is unlikely there will be perfectly diffuse target,

with known reflectance, in a scene for to use for calibration. Working in the LWIR

will also likely provide better night-time classification performance.

3.8 Remotely Measuring Index of Refraction

With additional analysis, polarization can be used to determine the index of re-

fraction of a material, as well as other information about the scene. Index of refraction

is a convenient quantity to use for classification because it does not depend on illu-

mination conditions, look angle, or other factors than can complicate classification.

One common theme with all work presented in this section is that index of refraction

retrieval tends to be very noisy. The index of refraction retrieval method presented in

this document improves on this by using a fitting model which utilizes the correlation

between index of refraction at different wavelengths.

Hong.

Hong measured the index of refraction of water from ultraviolet to microwave

wavelengths using emissivity measurements [110]. He used an approximation for the
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relationship between the s- and p-polarization reflectances,

ρs = ρ1/ cos
2 θ

p . (63)

The polarized reflectance is related to the unpolarized emissivity by

ε = 1− ρs + ρp
2

, (64)

which, in conjunction with Equation 63, can be used to solve for the polarized re-

flectance terms using unpolarized emissivity measurements. The Fresnel equations

for reflectance are then inverted to solve for index of refraction. The approximation,

however, introduces a bias into the measured index of refraction values. Including

polarimetric information eliminates the need for this approximation.

Thilak et. al..

Thilak et. al. explored simultaneously estimating both index of refraction and

surface normal angle [111, 112, 113, 114, 115, 116, 117, 118, 119]. It was assumed

that the sensor was in the plane of reflectance and the angle between source and

observer was known. The Priest-Meier (pBRDF) was used to account for rough

surfaces. Experiments were done by moving the source to a variety of different angles

of incidence. An imaging polarimeter was used to generate Stokes vector image

by taken ten images through a linear polarizer rotated in 15 degree steps. Spatial

averaging was also employed to reduce noise.

Their method first estimated the index of refraction, then used this effective index

of refraction to calculate the surface normal angle. Results for surface normal angle

were very accurate, usually within a few tenths of a degree. Measured index of

refraction values, however, were generally far less accurate, varying from the true value
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by as much as 45% for the real component and 400% for the imaginary component.

Additionally, while the estimated index of refraction was often robust to changes in

reflection angle, there were certain materials where it varied by 30% going from a

reflection angle of 45 degrees to 60 degrees.

Moreover, because this work was done in the visible (650 nm), self emission from

the target could be neglected. This is not the case in the LWIR, which adds an ad-

ditional complication to deal with, but also allows for night-time applications. The

research presented in this document extends this work to the LWIR, while getting

more accurate estimates for index of refraction. Because surface normal can be mea-

sured accurately using other techniques, such as LIDAR, it is assumed for most of

the research presented here that the surface normal is known a priori and only at-

tempt to estimate index of refraction. The other addition made to this past work is

to incorporate hyperspectral information, measuring at many wavelengths and thus

providing additional utility in material identification.

Hyde.

Hyde extended this work to consider images which were degraded by atmospheric

turbulance [120], [121]. The LeMaster-Cain polarimetric maximum-likelihood blind

deconvolution algorithm was modified and used to remove atmospheric distortions in

order to better classify unknown materials. The algorithm gives the object radiance,

DoLP, AoP, and the image point spread function (PSF) based on polarized radiance

measurements which have been distorted by the atmophere. The index of refraction

is fit to best minimize the difference between measured and theoretical DoLP. Be-

cause the reflectance of metals is very high for both polarization states, even in the

NIR, DoLP values were small and noisy, making index of refraction retrieval difficult.

Again, this work was done at a single wavelength in the NIR, where self-emission
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can be neglected, whereas the research presented in this document uses hyperspectral

imagery in the LWIR.

Huynh et. al..

Huynh et al used multispectral imagery from a single viewing angle to extract both

surface normal and index of refraction [122]. As with some previously reviewed papers,

they fit a sinosoid to the intensity measured at a number of different polarizer angles

to solve for Imax, Imin, and the angle of polarization. While only three polarizer angles

are needed to solve the problem, they used more to make the system overdetermined

and reduce the effect of noise. The azimuthal angle of surface normal with respect to

the sensor is given by the angle of polarization. To reduce noise in this quantity, they

perform the weighted average of the spectrally resolved angle of polarization. The

weights are determined by the residual amounts in the sinosoidal fit to measurements

at different polarizer angles.

To solve for index of refraction and zenith angle, they utilize Fresnel’s equations

to find

Imin

Imax

=

[
cos θ

√
n(λ)2 − sin2 θ + sin2 θ

n(λ)

]2
. (65)

Notice that they ignore the imaginary component of index of refraction. Since they are

working with various glasses at visible wavelengths, this can be a safe approximation,

but it will not always be the case. Even so, however, there are still more unknowns

than measurements as n must be solved spectrally. To eliminate this issue, they use

the Cauchy dispersion equation

n(λ) =
M∑
k=1

Ckλ
−2(k−1), (66)
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where Ck are now the coefficients to solve for. For their measurements, they use five

coefficients.

They tested this on a set of synthetic data using 30 equally spaced bands between

430 and 720 nm measured at five different polarizer angles. They tested their method

at a variety of different illumation positions, on a variety of different targets, and

for each they calculated the spectral angle between the measured and true index of

refraction as their performance metric. For all targets and illumination conditions,

the error in spectral angle was never greater than two degrees. Shape estimation was

less accurate, however, with errors exceeding 20 degrees for some targets.

There are many similarities between this work and the proposed research, but

they use several assumptions that will not always hold true. First, they ignore the

imaginary component of index of refraction, which can play an important role in

the polarization signature of many materials. Another difference is that, while they

incorporate a model to reduce the dimensionally of the spectrally varying index of

refraction, their model is a simple polynomial fit to the data as opposed to something

based in real physics. This polynomial fit works well where index of refraction is

relatively smooth, but in regions near resonances, the index of refraction is hard to

model with a simple polynomial. Finally, they only determine the effective index of

refraction stating that it may be off by some scaling factor, which is why they use

the spectral angle as a metric. In many applications this may be sufficient, but when

using an intensity-based classification metric this would yield an inaccurate result.

Fetrow et. al..

A group from AFRL and Applied Technology Associates demonstrated that index

of refraction can be estimated in the LWIR, using two different techniques. First, they

measured the S3/S2 ratio for glass, metallic, and painted surfaces in the LWIR [123].
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Their data was not hyperspectral, instead measuring an effective index of refraction

band-averaged over the 8.5-9.5 μm spectral range. Additionally, the source used was

blackbody radiance passing through a linear polarizer, such that �Sin = [1 0 − 1 0]T ,

making this an active technique. In most natural scenes S3 ≈ 0 [28], however, so this

technique would be difficult to implement without an active source.

Their second technique is more relevant to the work presented here. They created

a model to predict index of refraction based on polarized radiance measurements as-

suming knowledge of downwelling radiance being reflected off a sample, with known

temperature and surface roughness. They first tested their model in laboratory con-

ditions using a hemispherical dome to control the radiance being reflected off the

target. Careful measurements of the dome and sample surface temperatures were

taken. Two glass plates, one smooth and the other with a roughened surface were

used. The samples were measured, using a single pixel FTS with a quarter waveplate

and linear polarizer mounted in front, at 12 different angles relative to the sensor

ranging from normal to 80◦. It was found that S0 decreased with increasing angle,

while S1 became increasingly negative. This is expected because the dominate radi-

ance source was self-emission of the target. S2 and S3 were negligible for this setup.

They considered two cases, one for a smooth surface, the other incorporating the

Torrance and Sparrow BRDF to account for roughened surfaces. To solve for index

of refraction, they used a fitting algorithm to minimize the error metric

χ2(n, κ, σ, λ) =

1
2Nv−1

∑
θv

(
S0,data(θv)−S0,T−s(n,κ,σ,Td,Ts,θv)

ΔS0(λ)

)2
+
(

S1,data(θv)−S1,T−s(n,κ,σ,Td,Ts,θv)

ΔS1(λ)

)2
.

(67)

Nv is the number of different angles measured. S0,T−S and S1,T−S are those quantities

as predicted by the Torrance and Sparrow model for a given index of refraction,

surface roughness (σ), dome temperature (Td), sample temperature (Ts), and angle
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(θv). It was assumed that a surface roughness parameter, σ, was known. ΔS0 and

ΔS1 are varied to weight either S0, S1, or different wavelengths [124].

In order to get all wavelengths to fit to a realistic value, the constraints on the fit

had to be loosened. This lead to very large error bars, exceeding ±1 for both n and

κ at some wavelengths. Additionally, while the index of refraction of the material

should not, in principle, change with surface roughness, their predicted values did,

especially at longer wavelengths [124].

They then measured the same targets outside. The samples were set to an angle of

40◦ and their measured temperature was 50.5◦C. MODTRAN was used to model the

atmospheric downwelling radiance. Their results generally showed good agreement

between the measured and predicted values of S0 and S1 for most wavelengths. The

one exception was the predicted S1 signature for the smooth glass showed consistantly

more polarization than was measured. Interestingly, the amount of polarization mea-

sured did not seem to change much between the smooth and roughened glass [124].

The authors don’t offer an explanation of this, but other unrelated work [125] has

shown that it can be difficult to highly roughen surfaces, relative to LWIR wave-

lengths.

Finally, they ran simulations of how the predicted signatures are expected to

change with varying atmospheric parameters, sample temperatures, and viewing an-

gles. First, they varied the downwelling radiance by assuming three different at-

mospheric models, midlatitude summer standard clear, midlatitude winter standard

clear and midlatitude summer standard with cumulus clouds. As expected, the high-

est S0 is measured with cumulus clouds, which act as a blackbody in the LWIR, the

lowest S0 is measured for the winter atmosphere. Because thermal contrast is one of

the important factors in the amount of polarization observed, the atmopheres with

larger downwelling radiance showed less polarization. The second simulation varied
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the temperature of the sample to 47, 50, and 53◦C. Again, since thermal constrast is

important, the warmer the sample, the larger the polarization signature, as well as

the total radiance. The final simulation examined sensor declination angles of -40◦,

-30◦, -25◦, and -20◦. Again, as expected the total radiance drops, but the polarization

increases as the angle relative to the target surface normal increases [124].

There are many similarities between this and the proposed research, but there are

some key differences. One issue was that their calculated values for index of refrac-

tion were shown to be highly suceptible to errors in the input parameters [124]. In

many applications, these parameters, specifically surface temperature and roughness,

will not be known. The research presented in this document will estimate material

parameters without the need for a priori knowledge of the surface temperature. Fi-

nally, even with accurate inputs, their retieved values were very noisy. To mitigate

this issue, in the work presented here, physics-based models are used to fit index

of refraction. In addition to reducing some of the noise effects that were observed

in this group’s reasearch, it will also reduce the number of parameters needed to fit

index of refraction. This will enable adding additional parameters to the fit, such as

surface temperature and downwelling radiance, so these parameters may need not be

determined with high accuracy in advance.
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IV. Index of Refraction Fitting Routine

With the forward model developed, a fit can be performed solving for parameters

describing the reflectance, downwelling radiance, and object temperature which best

replicate the measured Stokes parameters. For most of this research, it is assumed

that the elevation angle, θ, is already determined by some other method such as

LIDAR, stereo imaging, etc. Often times, multiple viewing geometries are used to

further constrain the index of refraction retrieval. An error metric is defined in terms

of the Frobenius norm of the difference between measured and modeled:

E(x) =

√∑
i

∑
j

|Sij
0,mea − Sij

0,mod(x))|2 +
√∑

i

∑
j

|P ij
0,mea − P ij

0,mod(x)|2 (68)

x is a vector containing the parameters of the fit describing index of refraction, object

temperature, and downwelling radiance. P is a quantity describing the total polar-

ization which will be discussed in more detail later in this section. There is also an

option in the code to only use S0 or P when calculating the error function but the

default is to use both. The rest of this section will elucidate some of the finer details

of how index of refraction is solved for in this research.

4.1 Modeling Index of Refraction

One of the key aspects of this fit is reducing the number of parameters needed to

describe the index of refraction. This is done by incorporating physics-based models.

As discussed above, the Lorentz oscillator model describes the spectal dielectric con-

stant as one, or a number of, ”oscillator(s).” Mathematically, this can be expressed

as:

ε(ν) = ε∞ + ν̄2
p

J∑
j=1

fj
ν̄2
0,j − ν̄2 − iΞj ν̄

= ε1 + iε2. (69)
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ε∞ is a real-valued constant representing the value of ε as frequency goes to infinity.

νp is the plasma frequency of the material, fj is the relative strength, νj is the resonant

frequency, and Ξj is the damping coefficient of the jth oscillator. From this expression

for the dielectric constant, the index of refraction can be solved for using Equation

(5). The refractive index can be used to describe the reflectivity of the material using

Equation (16).

While the Lorentz oscillator model does very well describing pure crystalline ma-

terials, amorphous materials tend to have broader, more slowly varying refractive

indices that are difficult to describe with a sharp oscillator. A number of different

models exist to better describe amorphous materials, see [126, 127, 128] for some

examples. Many of these have been tested as part of this research but tend to be

either slow and/or inaccurate. Instead a method is proposed to solve for the imagi-

nary component of index of refraction at a few equally spaced points (or knots) in the

band and then use MATLAB’s [129] PCHIP (Piecewise Cubic Hermite Interpolat-

ing Polynomials) function to interpolate between these points. The Kramers-Kronig

relationship is then used to solve for the real component of index of refraction.

In principle, the Kramers-Kronig relationship requires knowledge of the spectrum

from zero to infinity in frequency space. Features in the imaginary component far

away from the band, however, have only a small effect on the behavior of the real

component in-band so assuming the imaginary component is zero far out-of-band is a

reasonable approximation. Forcing the imaginary component to be zero everywhere

out of band produces errors near the band edge, however, so a linear extrapolation

is used, extending 5 knot spacings out-of-band on either end of the spectra. If the

extrapolation leads to negative values, the imaginary component is set to zero at these

points. Figure 9 shows the results of fitting a sample index of refraction both with and

without doing this extrapolation. This clearly shows a dramatic improvement in the
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fit when extrapolation is used. There are still some errors near the instrument band-

edge, but these are unavoidable since the out-of-band index can’t be truly known.

To enforce Kramers-Kronig, the imaginary component of the Hilbert transform is

used as shown below:

n(ν̄) = −Im
{
1

π

∫ ∞

−∞

κ(ν̄ ′)
ν̄ − ν̄ ′

dν̄ ′
}
+ n∞. (70)

where

κ(ν̄ ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ν̄ ′ < ν̄min − 5 ·Δν̄

Extrapolate (set to 0 if negative) ν̄min − 5 ·Δν̄ < ν̄ ′ < ν̄min

pchip(κ) ν̄min < ν̄ ′ < ν̄max

Extrapolate (set to 0 if negative) ν̄max < ν̄ ′ < ν̄max + 5 ·Δν̄

0 ν̄ ′ > ν̄max + 5 ·Δν̄

(71)

n∞ is a constant that is solved for in the fitting routine and is nominally the value

of the real component as frequency goes to infinity. κ is a vector of the value of κ

at each knot point. Using this, the Stokes vector expression in Equation (28) can be

described in terms of variables n∞, κ, Te, φ, and parameters describing Ld. Figure

10 shows a schematic what this looks like for a sample index of refraction.

This fitting model works well for amorphous materials, but results show it does

not perform as well as the Lorentz oscillator model for crystalline materials. Because

of this, a method was developed to automatically determine which fitting model to

use based on the measured data. The basic concept is that materials with very

sharp spectral features in S0 and P are better described by the Lorentz oscillator

model, while materials with broader spectral features can be better described using

the PCHIP interpolation method. To test the sharpness, the slope of P is taken at
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(a) (b)

Figure 9. Fitting a sample index of refraction using (a) no out-of-band extrapolation
compared with (b) extrapolating out 5 knot points. The effects of truncating the
spectra with no extrapolation are clearly visible near the band edge. There is still
some error near the band edge but some of this is unavoidable since the index can’t be
truly known out-of-band.

Figure 10. Schematic of how the index of refraction of amorphous solids is modeled for
this research.
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every spectral point.

P (i)− P (i− 1)

Δν̄
∀i. (72)

If this exceeds some threshold, 0.1 μW
cm2·sr·cm−1·cm−1 is used for the analysis presented

here, the Lorentz oscillator model is used, otherwise the PCHIP interpolation is used.

This value was found to be a good threshold based on simulated data generated by

the system model described below. Atmospheric features may cause this to choose

the wrong model so for this research the model and number of oscillators is manu-

ally defined when working under atmospheric downwelling conditions. Because the

location of these atmospheric features is well known, however, this could be easily

corrected in the future.

4.2 Choosing Number of ”Oscillators”

In addition to choosing the right model, it is also important, when using the

Lorentz oscillator model, to choose the number of oscillators. Choosing too many

oscillators increase computational time and can cause the fit to get stuck in local

minima. If too few oscillators are used, the fit may not be able to accurately replicate

the spectral shape of the index of refraction. To solve for the number of oscillators,

the number of peaks in the absolute value of S1 is used, the supposition being that

one oscillator will lead to one sharp peak in S1. To avoid noise being characterized

as a peak, a minimum peak prominence of 0.1 μW
cm2·sr·cm−1 is used. This value was

chosen to be well above the noise of the instrument (see next section) but still small

enough to account for relatively weak polarimetric features. The location of each

peak is chosen as the starting guess for the oscillator center ν̄0 as well. The number

of oscillators can also be manually set, in which case they are equally spaced between

700 and 1350 cm−1.

Based on experience using the PCHIP interpolation model, it seems that around
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15 knot points work best. For this work, it does not appear using more knots provides

any significant improvement in the retrieval compared to the increase in fitting time

so no automatic means of determining number of knots has been developed.

4.3 Total Polarization

Equation (28) shows the relative amount of energy in S1 and S2 depends on φ,

which is the azimuthal angle of the sensor relative to the plane of reflectance. Because

targets in the LWIR are rarely illuminated by a single dominant point source, the

plane of reflectance can be a rather ambiguous term, making it desirable to eliminate

the φ term. Adding S1 and S2 in quadrature gives a ”total polarization”, P , where:

P =
1

2
τa(ν̄) (ρs(ν̄, θ)− ρp(ν̄, θ)) (Ld(ν̄)− B(ν̄, Te)) . (73)

This quantity is very similar to DoLP, but without using S0 to normalize. Having a

normalized quantity is not a necessity to the fitting routine so dividing by S0 only

adds an additional source of noise.

An issue arises when calculating P from measurements of S1 and S2. Adding

S1 and S2 in quadrature means the measured P will always be positive, while the

modeled P , given by Equation (73) can be either positive or negative. To mitigate

this issue, the sign of the largest in magnitude between the spectrally-averaged S1

and S2 is applied to P . For example, if S1 is positive and S2 is negative, and the

magnitude of S2 is greater than S1, then P will be negative. For outdoor scenarios, the

signature will almost always be emission dominated so this sign ambiguity becomes

virtually irrelvant. In this case, however, the sign of P and more specfically the AoP

introduced earlier can give information about the orientation of an object.

Another potential problem with using P is that, since it is strictly positive before
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the sign is applied, any noise as the S1 and S2 measurements approach zero will be

additive. As P approaches zero, this produces a biasing to the measured P values

which is dependent on the sensor noise. Figure 11 shows this effect and how it can

bias spectral measurements for various noise levels.

0.01

0.032

0.064

0.128

(a) (b)

Figure 11. (a) As P approaches and goes below the noise level of the instrument, a
bias is introduced into the measurement. (b) shows shows the effect this can have on
a measured total polarization spectrum.

One possible way to address this is to ascribe a sign to each spectral channel of P .

As was shown earlier in this section, whenever P is positive the downwelling radiance

must be greater than blackbody radiance at the temperature of the object and when P

is negative the opposite is true. This leads to a dramatically different solution when P

is positive as opposed to negative, even if the magnitude of P is very small. Essentially,

if the sign of P is wrong, the fit will try to make the reflectance spectra look like the

emissivity spectra for the material and vice-versa which drastically changes the index

of refraction. Noise may cause a sign flip when P is near 0. Because of how important

it is to get the sign correct, the same sign is applied to each P value at every spectral

point and angle used in the fit. Additionally, in order to do this one must be very

sure that there is no appreciable scene drift that could bias S1 and S2 measurements

to change from positive to negative or vice-versa. The simplest solution is to simply
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ignore P values that fall below some threshold and at these points only use S0 in the

fit as described above. The threshold value will depend on the noise characteristics

and settings of the sensor being used. Results using some of these corrections will be

shown later in this document, but most of the analysis presented forces P to have the

same sign for all spectral points/viewing angles and does not threshold these values.

4.4 Defining Temperature Limits

It is also important to have a reasonable starting estimate for surface temperature

and, when dealing with indoor measurements, a downwelling temperature. For indoor

measurements, Equation (73) can be exploited to automatically determine temper-

ature limits from the data. In this case Ld = B(Td), where Td is the downwelling

temperature. The Fresnel equations dictate that ρs ≥ ρp ∀ n ≥ 0, κ ≥ 0, θ; so if P is

positive, Td > Te and vice-versa. From here, it can be derived that when Td > Te, S0

must be greater than a blackbody at Te and less than a blackbody at Td. The lowest

spectral brightness temperature of S0 defines the upper limit for Te and the highest

spectral brightness temperature defines the lower limit for Td. Likewise, in the case

where Te > Td, a lower limit for Te and upper limit for Td can be defined. The other

temperature limits are defined as 50 K greater than a lower bound, or less than an

upper bound. The initial estimate for temperature is set to be in the middle of the

bounds.

When measurements are taken under atmospheric downwelling conditions, B(Te)

will almost always be greater than Ld. The temperature limits on Te, described

above for the case where P is negative, can still be used. Right now, no limits from

the raw data are placed on the lookup table of atmospheres used to describe Ld.

There is, however, an option to manually fix one, multiple, or all of the atmospheric

parameters used in fitting. There is also the option to manually define a downwelling
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spectrum not described by any of the atmospheres used in fitting. If Ld is greater than

B(Te), this is an indication that adjacency effects may be contributing significantly to

the observed radiance and assuming a blackbody-like downwelling may be the more

appropriate model.

4.5 Fitting Algorithms

It is also worth considering how best to search the parameter space to minimize the

error function given in Equation (68). Three search options have been incorporated

into this method, one gradient-based, one non-gradient-based, and a hybrid of the

two. Gradient-based methods are relatively fast but susceptible to getting stuck in

local minima. For this work, the gradient-based technique is the quasi-newton method

from MATLAB’s nonlinear least squares fitting toolbox. Non-gradient-based methods

are slower but far less susceptible to local minima, for this work a bounded version of

the Nelder-Mead simplex maximization method is used as implimented in MATLAB’s

fminsearch function. A potential solution is to use a hybrid of the two approaches.

The search starts with a non-gradient-based search, then after some stopping criteria

is met, the parameters obtained from this fit are used as the starting estimate for

a gradient-based method. The idea being that the non-gradient-based method will

get close enough to the global minimum to allow the gradient-based method to avoid

local minima. To save time, the stopping criteria of the non-gradient-based method

must be relaxed. In the case of this code, a maximum number of iterations (200) is

set after which the gradient-based method will take over.

Figure 12 shows the minimum value of the objective function found for each of

the three methods applied to the beaker data described later. This shows that the

quasi-newton fitting method generally performs best, but occasionally gets caught

in local minima. Bounded fminsearch is usually worse, but it is far less susceptible

72



www.manaraa.com

Row #

O
b

je
c

ti
v

e
 

F
u

n
c
ti

o
n

 V
a

lu
e

fminsearch

quasi-newton

hybrid

Figure 12. Comparison of the objection function value when the fit has arrived at a
solution for the three fitting routines used in this work.

to converging to wildly inaccurate solutions. The hybrid method seems to strike a

balance between these two. As a general rule, it seems best to use the quasi-newton

method when using the PCHIP interpolation model and bounded fminsearch when

using the Lorentz oscillator model. The hybrid fit is also used occasionally where

noted.

4.6 Solving for Downwelling Radiance

For this research, there are two cases to consider when fitting the downwelling

radiance: first, measurements taken in a lab and second, measurements taken out-

doors. In the first case, it is assumed that most objects in the room are at the same

temperature, making the downwelling radiance blackbody-like. In some instances, a

blackbody is used to illuminate the object to enforce this assumption. If the down-

welling radiance is blackbody-like, one variable, a ”downwelling temperature,” is all

that is needed to describe the downwelling radiance reflected off an object. This
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downwelling temperature is added as a parameter into the fitting routine and solved

for.

The second scenario is more complicated. Atmospheric downwelling is too complex

and spectrally structured to properly describe using only one parameter. There are,

however, atmospheric models that can reasonably predict downwelling radiance based

on a few inputs describing the state of the atmosphere. This work utilizes MODTRAN

[130], which is one of the most common atmospheric radiative transfer models. There

are hundreds of different inputs into this model, but many have either no or very little

effect on the downwelling radiance in the LWIR. In total, four parameters were chosen

as they seem to have the greatest effect on the downwelling radiance: air temperature

at ground level, temperature lapse rate, water vapor concentration at ground level,

and the ozone concentration scaling factor.

Ground temperature, water vapor concentration, and ozone scaling were all varied

in 20 equally spaced steps. The temperature lapse rate was varied more coursely with

5 values. A range of resonable values for each of these parameters was found by

examining 10 years of atmospheric radiosonde profiles for the NOAA weather station

in Wilmington, Ohio.

From these radiosonde datasets, it was determined that ground temperature should

vary from 0 to 35◦C, water vapor from 1000 to 9999 ppmv, and temperature lapse

rate from 4 to 7 K/km. Instead of equally spacing the temperature lapse rate values,

integer steps were taken from 4 to 7, then 6.5 was included as it corresponds to the

temperature lapse rate of the 1976 US Standard Atmosphere. The maximum value

for the water vapor concentration was chosen because MODTRAN doesn’t allow for

values over 9999 ppmv. This corresponds to a dewpoint of about 7◦C at standard

ground atmospheric pressure. The lowest water vapor concentration corresponds to

a dewpoint of -20◦C, which is around the lowest value seen in at ground level in the
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NOAA radiosonde data. Figure 13 shows the altitude profile of temperature and

water vapor concentration for every radiosonde profile measured from 2005-2015 as

well as the pressure profile. Pressure is not included as a fit parameter because it

is relatively constant day-to-day. The ozone scaling factor was varied from 0.5 to 2.

This was chosen as a reasonable range based on a paper describing the seasonal and

daily variations in ozone [131].

Figure 13. Plot of the altitude profile of temperature, dew point, and pressure for every
sounding profile taken between 2005 and 2015 from the Wilmington, OH NOAA site.
The temperature and dew point can vary significantly day-to-day meaning they have to
be fit to accurately describe the state of the atmosphere on a given day. Pressure will
also have an effect on the atmospheric transmission, path radiance, and downwelling
radiance, but this figure shows that the pressure profile is very consistent day-to-day
so pressure is not included as a parameter.

It is important to determine how both temperature and water vapor concentration

vary with altitude. The temperature is somewhat straight-forward as both a ground
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temperature and a lapse rate are fit. The atmosphere, however, starts to warm again

starting around an altiude of 20 km, meaning a single lapse rate cannot fully define

the temperature profile. To fix this, the temperature is fit using the determined

ground temperature and lapse rate up to an altiude of 20 km, then the 1976 US

Standard Atmosphere values for temperature as a function of altitude are used for

everything above 20 km. It is also evident from Figure 13 that the temperature seems

to reach a minimum value and plateau there regardless of ground temperature and/or

temperature lapse rate. In order to account for this, all temperature values below 20

km altitude and below 216.7 K were set to 216.7 K. This corresponds with the lower

bound set by the ISAC atmospheric correction algorithm [132]. The other important

piece is to determine how water vapor scales with altitude. For this, pieces of the

ISAC algorithm are again used. Their work determined a function describing the

water vapor profile as a function of altitude, z, and water vapor concentration at

ground level, C0:

CH2O(z) =

⎧⎪⎨
⎪⎩

Cstd(z)
[
1 +

(
C0

7330
− 1
) (

1− e−0.8(16−z)
)6]

z ≤ 16 km

Cstd(z) z > 16 km
(74)

Cstd denotes the water vapor concentration as a function of altitude given by the 1976

US Standard Atmosphere. Each of the four parameters are varied independently and

MODTRAN is run for each of these settings generating a 5-D tensor, 4 dimensions

for the variables and one for the spectral axis. A total of 40000 different atmospheric

downwelling profiles are generated. This same treatment can also be used to solve for

atmospheric transmission and path radiance, but this research is done at short ranges

so atmospheric tranmission is presumed to be one and path radiance is presumed to

be zero.
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V. Results

5.1 Simulated Data

To start, a series of simulated datasets were created to test how the index of

refraction retrieval technique described in the previous section performs under a vari-

ety of different laboratory conditions. Under laboratory conditions, the downwelling

radiance is modeled as a blackbody at some temperature. For these datasets, the

temperature contrast between target and background, sensor noise, and spectral res-

olution are varied, as well as using different combinations of viewing geometeries. Ta-

ble 1 shows a summary of the different settings used to generate each of the synthetic

datasets. An exemplar index of refraction is forward modeled to S0 and P using these

settings. Normally-distributed random noise, based on the noise-equivalent spectral

radiance (NESR) setting, is then added to these truth spectra and the retrieval is

performed on these noisy spectra. In total, 500 Monte Carlo simulations were per-

formed for each setting. For these datasets, the hybrid search algorithm described in

Section 4.5 was used. True quantitative metrics would be highly dependent on sensor

characteristics and the engagement scenario. Instead, the goal here is to develop a

good qualitative understanding of how some of these parameters affect the retrieval.

Table 1. Summary of simulated datasets used to test the index of refraction retrieval.
Here, [r.u.] =

[
nW

cm2·sr·cm−1

]
Td [K] Te [K] NESR [r.u.] Viewing Angles Res. [cm−1]

295.5, 297, 294 32 20, 40, 60 1
301, 309, 324

250 294 32, 45, 64, 128, 181 20, 40, 60 1

250 294 32, 45, 64, 128, 181 20, 40, 60 16, 8, 4, 1, 0.5

250 294 32 {20, 40, 60}, {30, 40, 50}, 1
{50, 60, 70}, {30}, {60}
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Reducing the contrast, ΔT , between downwelling and object temperature has two

primary effects on the data. First, it reduces the overall polarization. In the limit

where the ΔT = 0, Equation 73 dictates that P = 0. The other effect reducing the

temperature contrast has is to mute the spectral features in both S0 and P . Again

in the limit where the temperatures are equal, S0 will look exactly like a blackbody

regardless of the material. It is interesting to consider how the fit performs under both

of these conditions. For this and all subsequent synthetic datasets, the retrieval-to-

retieval variability, measured by the standard deviation across all retrievals, is used

as the comparison metric. The error in the median retrieval is not necessarily an

effective metric because the noise is normally distributed. Taking the median across

500 retrievals provides a huge boost to the effective SNR of the measurement, so for

almost all settings, the rms error of the median retrieved value is nearly identical.

The variability between retrievals is a better metric of the uncertainty in the retrieved

value for a single measurement. Figure 14 shows the rms standard deviation in both

n and κ as a function of the temperature contrast and the average value of P . It

appears that there is an exponential relationship between the temperature contrast

— and average value of P — and the retrieval variability.

Another factor to consider is the NESR of the instrument being used to measure

the signature. Essentially this leaves both the magnitude of P and depth of the

spectral features in both S0 and P fixed, but varies their weight relative to the noise

level of the instrument. This mimics the effect of going from a high-fidelity, low NESR

sensor to one with worse noise performance. The 250K downwelling temperature

is a very rough approximation of clear sky downwelling. Decreasing the NESR will

certainly improve the fit, but it is good to develop a sense of how much fit performance

improves relative to NESR differences. Figure 15 shows the results of changing the

NESR. The relationship with NESR appears to be roughly linear in this domain.
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Figure 14. Standard deviation in both the real (blue) and imaginary (red) component
index of refraction across all 500 Monte Carlo simulations as a function of contrast
between downwelling and object temperature and the average value of P .

Obviously at some point this relationship will break down as variability can’t go

negative, but this synthetic dataset covers a wide range of reasonable NESR values.

It is also evident — based on the standard deviation values — that the sensor NESR

has less of an effect on fit performance than the temperature contrast over reasonable

ranges.

Spectral resolution is an interesting factor to consider because there are two com-

peting consequences of changing spectral resolution. First, increasing the spectral

Figure 15. Standard deviation in both the real (blue) and imaginary (red) component
of index of refraction across all 500 Monte Carlo simulations as a function of sensor
NESR.
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resolution increases the number of points used in fitting which in theory should in-

crease the performance of the fit. On the other hand, increasing the number of

spectral bands decreases the spectral bandwidth over which each point is integrating

thus decreasing the NESR. The settings summarized in Table 1 mimic this effect.

Figure 16 shows that spectral resolution seems to have little effect — at least when

the downwelling radiance is blackbody-like — on the retrieval over a reasonable range

of different spectral resolutions.

The final factor considered in these simulated datasets is various combinations of

viewing angle. The primary topics considered are: multiple viewing angles compared

to only using a single viewing angle, the effect of changing the relative differences

between multiple views, and the effect of increasing the magnitude of the viewing angle

(i.e. going further off-nadir). From these datasets it appears that going further off-

nadir generally leads to a better fit and multiple viewing angles significantly improves

the fit. The spread of angles is also important although it has less of an effect than

the overall average magnitude of the angles. For the first case with viewing angles of

20◦, 40◦, and 60◦, the variability was 0.038 and 0.034 in n and κ. When the overall

spread of angles used in fitting was reduced — i.e. the second case where viewing

Figure 16. Standard deviation in both the real (blue) and imaginary (red) component
of index of refraction across all 500 Monte Carlo simulations as a function of spectral
resolution.
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angles are 30◦, 40◦, and 50◦ — the variability increases to 0.080 and 0.074. When

the spread is held constant but the overall magnitude of the angles is increased —

viewing angles of 50◦, 60◦, and 70◦ — the variability drops to 0.029 and 0.028, below

both of the previous cases. Finally, when only a single angle is used, the fit performs

significantly worse. When only a 30◦ viewing angle is used, the variability is 0.326

and 0.251. When only a 60◦ viewing angle is used, the variability is 0.208 and 0.250.

All of these datasets used the index of refraction of quartz glass, which is used

later. This material is not well modeled by the Lorentz oscillator model so instead

the interpolation method described in the previous section is used. The index of

refraction of SiC, also used later, on the other hand does obey the Lorentz oscillator

model quite well. Simulated datasets where also created and analyzed using SiC as

the material of interest. Identical trends were seen in these SiC datasets, however,

that data isn’t presented for the sake of brevity.

5.2 Laboratory Data

To start testing this index of refraction retrieval method on real data, a series

of experiments were conducted under laboratory conditions. This allowed for a rea-

sonable amount of control over many of the variables that can affect the radiance

signature of a target. It is important to have a good understanding of the effect some

of these factors might have on the retrieval before moving on to more complicated

scenarios.

Pyrex Beaker.

The first dataset collected to test the index of refraction retrieval method was of a

Pyrex beaker on a hot plate. Eight datacubes, collected at 8 cm−1 spectral resolution,

were averaged together. The hot plate provided a contrast between the beaker and

81



www.manaraa.com

background, without which the beaker would simply look like a blackbody. The hot

plate also created a temperature gradient going up the beaker, which changes the

relative importance of the reflected versus emitted components of radiance. Finally,

going horizonatally across the beaker provides a full range of surface normal angles

going from -90◦ to 90◦. In practice, because of image blur, pixels near the edge of

the beaker cannot be used, so the usable surface normal angles vary from about -55◦

to 55◦. In total, the usable parts of the beaker in the image is 40 pixels across and

41 pixels high. From this, index of refraction, surface temperature, and the effective

temperature of the background reflecting off the beaker are fit.

Figure 17 shows the measured and expected S0 and P for various points on the

beaker. As expected, S0 is significantly higher at the bottom of the beaker than at the

top. S0 also decreases with surface normal angle because as surface normal increases,

reflectivity increases. Also of note is that S0 spectrum changes significantly going

from the center of the beaker to the edge. This change is not a simple linear offset

either, further illustrating how emissivity can change with viewing angle in a way

that may be difficult to compensate for. The P spectra also help give a qualitative

understanding of the problem. Again as expected, P is greater towards the bottom

of the beaker because there is a greater temperature contrast from the background.

Also, near the center of the beaker when surface normal angle goes to zero, there is

very little polarization, consistent with what is expected. There appears to be some

biasing in the P measurements which will be discussed later.

From these measurements, the index retrieval is performed one of two ways, either

fitting the angle for each pixel independently or fitting each row of the image using

all surface normal angles in conjuction with one another as described earlier. First,

Figure 18 shows the results of performing the retrieval on each pixel independently.

Because of the geometry of the beaker, the index of refraction could not be measured
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Figure 17. Measured S0 and P spectra (blue) compared with expected (green) for
various pixels of a heated Pyrex beaker. Expected values are generated based on
forward modeling the index of refraction of Pyrex taken from [133]. The white symbols
on the inlay images show the location of the spectra with the corresponding symbol on
the plot. The error bars represent two times the expected noise based on the previously
measured NESR of the instrument. [34] The plots in red below each pane represent the
residual error between measured and expected. As expected, S0 increases towards the
bottom and decreases towards the left/right edges. P increases with both temperature
contrast, i.e. going down the beaker, and surface normal angle, going towards the
left/right edge of beaker. Some potential causes for the errors between measured and
expected, especially in P will be discussed later.
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Truth (Ellipsometer)

Retrieved

Figure 18. Retrieved (blue) and true (green) index of refraction for each pixel of the
Pyrex beaker. The solid blue line represents the median retrieval across all pixels and
the shaded blue region represents plus/minus one standard deviation. The green line
is taken from ellipsometry measurements. In this fit, P at every angle and spectral
point is forced to be negative.

using ellipsometry. Instead, this retrieved index of refraction is compared to one

presented in the literature for the index of refraction of Pyrex. [133] The rms error

between the retrieved and expected index is 0.339 for the real component and 0.464

for the imaginary component. It is also of interest to see how self-consistent the fit

is. The error bars on the plot represent plus/minus one standard deviation across the

index retrieval for all pixels. The rms standard deviation, i.e. size of the error bars,

is 0.671 in n and 0.744 in κ.

One of the major drivers of this error is scene drift creating an artificial polar-

ization signature. This has an especially large effect at near-normal viewing angles,

near the center of the beaker. Scene drift is a major problem for division of time

polarimeters like the instrument used for this work. If the object or background is

significantly changing temperatures between measurements for each polarizer angle,

an artificial pseudo-polarization is added to the data. Because this work uses the

modified Pickering method to calculate the Stokes vector, two S0 measurements can

be calculated: L0 + L90 and L45 + L135. The difference between these calculated S0
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Bottom Row

Top Row

Column #
Figure 19. (left) Image of the band-averaged radiance difference between the two S0

estimates for the Pyrex beaker dataset. (right) Band-averaged S1 measurements across
each row of the image. As shown earlier, S1 should always be negative for an emission-
dominated radiance signature. This positive biasing is greater towards the bottom of
the beaker where scene drift is greatest indicating that scene drift is the source of this
error.
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value is an indication of scene drift. Figure 19 shows the band-averaged difference be-

tween these two S0 estimates along with the band-averaged S1 measurements across

all rows. It was shown in Section 2.5 that, for an emission dominated signature, S1

should always be negative but at near normal viewing angles it is positive. This effect

is greater towards the bottom and center of the beaker, where scene drift is the great-

est, indicating that temperature drift of the scene, most likely in the temperature of

the beaker, over the course of the data collect is the source of this error. Using only

the retrievals for the outer 10, and upper 20 pixels of the beaker, where scene drift is

least and has the least effect, the rms error is reduced to 0.091 and 0.259 in n and κ,

respectively. Additionally, the pixel-to-pixel standard deviation is reduced to 0.487

in the real component and 0.502 in the imaginary component.

Another factor that may be affecting this data at near-normal viewing angles is

the bias created due to noise as P approaches zero which was discussed in Section

4.3. One way to mitigate this effect is to allow the sign of P to vary, based on the

sign of S1, in each spectral channel. Figure 20 shows the results of performing the

retrieval on every pixel while allowing P to change sign. In this case, the RMS error

in n and κ is reduced to 0.090 and 0.222, respectively. The pixel-to-pixel variance,

while slightly lower, still remains high at 0.549 and 0.435 in the real and imaginary

components.

The chief issue with allowing P to change sign is even a small amount of error or

scene drift can cause P to switch signs as the true P approaches 0. As was shown

in Section 4.3, the only way for P to be positive is if the downwelling temperature

is greater than the object temperature. This causes a contrast reversal where the

fit attempts to make the downwelling radiance match what is actually the emitted

radiance and vice-versa. The index of refraction that produces a certain reflectivity

spectrum is significantly different than that which produces the same spectrum in
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Truth (Ellipsometer)

Retrieved

Figure 20. Retrieved (blue) and true (green) index of refraction for each pixel of the
Pyrex beaker. The solid blue line represents the median retrieval across all pixels and
the shaded blue region represents plus/minus one standard deviation. The green line
is taken from ellipsometry measurements. In this fit, P is assigned the same sign as S1

for each angle and spectral point.

emissivity. It was already shown that scene drift caused several pixels to have positive

S1 values. The index retrieval for these pixels is significantly different which is one

of the main factors in the high pixel-to-pixel variability. When only the outer 10 and

upper 20 pixels are considered as before, the error in n and κ is reduced to 0.085 and

0.179. The standard deviation is also significantly reduced even more significantly

from 0.549 and 0.435 to 0.128 and 0.126.

Another way to analyze this dataset is to fit the index of refraction across every

row of the image, using all surface normal angles in conjunction with one another

in the fit. This is akin to a sensor flying over and viewing the same target from

multiple angles. Figure 21 shows the results of this fit. The rms error in the real

and imaginary components is 0.135 and 0.180, respectively, the fit-to-fit variability is

0.220 and 0.238. Interestingly, the RMS error in n is actually slightly greater than

the pixel-by-pixel fit, but given the error bounds this difference is not statistically

significant. As expected, the fit-to-fit variability is far less doing the row-by-row fit.

While there is significant variance between individual retrievals in all these cases,
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Truth (Ellipsometer)

Retrieved

Figure 21. Retrieved (blue) and true (green) index of refraction for each row of the
Pyrex beaker image. The solid blue line represents the median retrieval across all rows
and the shaded blue region represents plus/minus one standard deviation. The green
line is taken from ellipsometry measurements.

it is important to note that these are uncorrelated with temperature. It has been

previously shown that the change in index of refraction with temperature for various

glasses is very small (on the order of 10−4 1
K
) [134] so the retrieved index should not

change significantly with temperature. The average coefficient of determination (r2)

between temperature and the fitted index, across all spectral bands, is 0.07 for n(ν̄)

and 0.02 for κ(ν̄). This indicates that, as required, the retrieval method is robust to

changes in object temperature, at least in this case.

Another issue with this experiment is that the downwelling is not controlled. It is

assumed that the downwelling radiance is blackbody-like, but this may not be strictly

true. This makes it difficult to verify what the ”expected” S0 and P actually should

be. Additionally, when fitting each row simultaneously, it is assumed that each pixel

in a given row is seeing the same downwelling radiance. Even if the downwelling

radiance is truly blackbody-like, each pixel might be seeing a blackbody at a different

temperature, depending on from where in the room the reflection is actually origi-
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nating. Because of these effects, the next two experiments were conducted using a

controlled illumination source, specifically a blackbody.

Silicon Carbide Wafer.

The beaker represented a signature dominated by emission with the reflected com-

ponent being ambient background. It is also interesting to examine the case where

reflected radiance is the dominant component of the signature. Having a controlled

illumination source also makes it easier control the experiment discussed in the pre-

vious section. For this test, a blackbody set to 50◦C was used to illuminate a Silicon

Carbide (SiC) wafer. The index of refraction of SiC is well represented by the Lorentz

oscillator model making it a good test case for dealing with crystalline materials. The

wafer was observed from angles of 20, 40, and 60◦ off of the surface normal. For each

viewing angle, the blackbody was moved so the specular reflection off the wafer landed

on the sensor. Data was collected at 1 cm−1 spectral resolution and 8 datacubes were

averaged.

Figure 22 shows the measured and expected S0 and P for all three angles measured.

The white boxes on the inlay images show the pixel window used in fitting. The error

bars represent two times the standard deviation across all pixels. It is clear that there

is significant difference between the expected and measured values for both S0 and

P . The error in S0 appears to be a spectral shift which could be explained by a slight

error in the expected oscillator location. The measured P is also significantly higher

than expected near the peak at both 40◦ and 60◦. One possible reason for this is

birefringence which will be discussed in more detail later.

Even with these differences between measured and expected, index of refraction

can still be accurately retrieved. Figure 23 shows the retrieved index compared with

the expected. The shaded blue region represents plus/minus two standard deviations
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20° 40° 60°

Figure 22. Measured S0 and P spectra (blue) compared with expected (green) for
all pixels of a SiC wafer. Expected values are generated based on forward modeling
the index of refraction measured by an ellipsometer. The white boxes on the inlay
images shows the pixel window used in fitting. The error bars represent two times the
standard deviation across all pixels. The plots in red below each pane represent the
residual error between measured and expected. Some potential causes for the errors
between measured and expected, especially in P will be discussed.

Truth (Ellipsometer)

Retrieved

Figure 23. Retrieved (blue) and true (green) index of refraction for a SiC wafer. The
solid blue line represents the median retrieval across all pixels and the shaded blue
region represents plus/minus two standard deviations. The green line is taken from
ellipsometry measurements.
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across all pixels. The rms error between expected and retrieved is 0.073 in n and

0.067 in κ. The rms standard deviation across all retrievals is 0.027 in n and 0.046 in

κ. The retrieved downwelling and object temperatures are 321.7 ± 0.3 K and 293.9

± 0.1 K, respectively, compared with the expected 323.2 and 294.1 K.

Despite this reasonable fit to the index, however, the S0 and P spectra are not well

described by the retrieved values, as shown in Figure 24. This indicates that there is

something wrong with the model being used to describe the SiC. Because this wafer

was a highly pure crystalline sample of SiC, it was suspected the birefringent nature

of SiC may play a role in this discrepency. Essentially, birefringence means that the

index of refraction depends on the polarization of the light either being reflected off

of or emitted from the surface. The two polarization states are referred to as the

ordinary and extraordinary, or o- and e-, rays.

A potential way to account for this is to simply solve for two indices of refraction,

one for the s- and one for the p-pol radiance. The ellipsometer used to measure

the index of refraction also has built-in models describing both the ordinary and

extraordinary ray indices of refraction for SiC. Figure 25 shows the retrieved indicies

using the method of solving for separate indices of refraction describing the s- and p-

pol radiances. Results are compared with the ellipsometer expected values. The rms

error in the real and imaginary components are 0.043 and 0.067 for the ordinary ray

and 0.066 and 0.114 for the extraordinary ray. The rms standard deviation (i.e. the

pixel-to-pixel consistency) is 0.024 and 0.043 in the real and imaginary components of

the o-ray and 0.064 and 0.062 for the e-ray. The retrieved downwelling temperature

is 321.4 ± 1.2 K and the retrieved object temperature is 294.1 ± 0.2 K.

Figure 26 shows the retrieved S0 and P compared with the measured when bire-

fringence is acconted for. This produces a much better fit to the measured data,

especially for P . Without accounting for birefringence, the rms difference between
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20° 40° 60°

Figure 24. Retrieved S0 and P spectra (black) compared with measured (blue) for all
pixels of a SiC wafer. The retrieved values are generated by forward modeling the
retrieved index of refraction, object temperature, and downwelling temperature. In
both case, the error bars represent two times the standard deviation across all pixels.
The plots in red below each pane represent the residual error between measured and
retrieved. There are still significant differences between the retrieved and measured
values, especially in P , which are discussed below.

Truth (Ellipsometer)

Retrieved

(a) (b)

Figure 25. Retrieved (blue) and true (green) index of refraction for both the o- (plot
a) and e-ray (plot b) of a SiC wafer. The solid blue line represents the median retrieval
across all pixels and the shaded blue region represents plus/minus two standard de-
viations. The truth values were taken from existing models used in the JA Woollam
IR-VASE ellipsometry software package for both the o- and e- ray indices of refraction
for SiC.
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Figure 26. Retrieved S0 and P spectra (black) compared with measured (blue) for
all pixels of a SiC wafer when incorporating birefringence into the fit. The retrieved
values are generated by forward modeling the retrieved index of refraction, object
temperature, and downwelling temperature. In both case, the error bars represent
two times the standard deviation across all pixels. The plots in red below each pane
represent the residual error between measured and retrieved. The difference between
the measured and retrieved spectra is significantly reduced, especially in P , compared
to the fitted model when not accounting for birefringence.
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measured and retrieved S0 and P was 0.072 and 0.098 μW
cm2·sr·cm−1 , respectively. When

birefringence is added to the fit, the error between measured and retrieved is reduced

to 0.048 and 0.069 μW
cm2·sr·cm−1 in S0 and P , respectively.

Quartz Window.

For this test, a blackbody set to 115◦C was reflected off of quartz glass block win-

dow. The temperature of the window was assumed to be the ambient temperature

of the room, 21.5◦C. The block was rotated to three different angles (nominally 20◦,

40◦, and 60◦) and the blackbody was aligned so the sensor would always be in the

direction of specular reflection. 16 cubes were averaged at 1 cm−1 spectral resolu-

tion. This represents a scenario similar to the SiC wafer dataset, the key difference

being that quartz glass is an amorphous material and is not modeled well by the

Lorentz oscillator model. A small sample of the material was used and ellipsometry

measurements were taken to determine the true index of refraction.

Figure 27 shows the measured and expected S0 and P . Again, the expected

values are calculated based on forward modeling the ellipsometer-measured index

of refraction along with the known blackbody and object temperatures. There are

some differences between the measured and expected, but in general there is good

agreement. One potential error in the 60◦ P data is uncertainty in the true viewing

angle. The quartz block was aligned using a protractor and ruler which gives some

relatively large uncertainties. Results from Section 5.2 indicate that the true surface

normal angle may have been slightly less than 60◦ which could be why the expected

overestimates the amount of polarization.

From this data, the index retrieval is again performed independently on each pixel.

For the sake of simplicity, only pixels that viewed the window at all three angles are

used (see the inlay images in Figure 27). The results of the retrieval are shown in
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Figure 27. Measured S0 and P (blue) compared with expected (green) for a quartz
glass block window with heated blackbody radiance reflecting off of it. The error bars
represent plus/minus one standard deviation across all pixels. The white box on the
inlay images show the pixels used in the fitting for each viewing angle. The plots in
red below each spectra represents the error between measured and expected.
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Truth (Ellipsometer)

Retrieved

Figure 28. Retrieved (blue) and true (green) index of refraction for a quartz glass
window. The solid blue line represents the median retrieval across all pixels and the
shaded blue region represents plus/minus two standard deviations. The green line is
taken from ellipsometry measurements.

Figure 28. The rms error between the retrieved and expected index is 0.072 for the

real component and 0.062 for the imaginary component. The rms standard deviation

across all retrievals, i.e. the size of the retrieval errorbars, are 0.060 for the real

component and 0.057 for the imaginary component. The retrieved downwelling and

object temperature were 386.4±1.4 and 298.1±1.2 K, respectively, compared with

the expected 388.2 and 294.7 K. The error bounds represent two standard deviations

across all pixels.

Figure 29 shows how these retrieved parameters forward modeled to S0 and P

compare with the measured values. The rms error between the median retrieved

S0 and median measured S0 is 0.133 μW
cm2·sr·cm−1 or approximately 1% of the average

S0 value. The rms error in P is 0.079 μW
cm2·sr·cm−1 which is approximately 5% of the

average P value. In almost all cases, the retrieved values lie well within the error

bars of the measurements indicating that the measurements are well described by the

model. For comparison, when the Lorentz oscillator model is used to describe this
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data, the error in n and κ increases to 0.366 and 0.367. The error difference between

the retrieved S0 and P and measured are 0.507 and 0.165 μW
cm2·sr·cm−1 , respectively.

One of the common material identification techniques in the LWIR is temperature-

emissivity separation; see Section 3.5 for more information. One popular TES algo-

rithm is the method of maximum smoothness described in Section 3.5. It is inter-

esting to see how the index of refraction retrieval method here compares to TES

algorithms. To do the comparison, the retrieved index of refraction is forward mod-

eled to emissivity. The TES algorithm is applied to the same data. There are still a

couple key differences between these two methods though. First, all angles are used

in conjunction with one another when fitting the index of refraction. The ability to

effectively average multiple angles is one of the chief advantages of estimating index

of refraction. Because emissivity is changing with viewing angle, concatenating mul-

tiple viewing angles is not advisable for TES algorithms. The other main difference

is that the index of refraction retrieval is also solving for the downwelling radiance

while the TES algorithm requires a priori knowledge of the downwelling radiance as

an input. For this comparison, the true blackbody temperature and emissivity are

used as inputs for the TES algorithm.

The results of the comparison are summarized in Figure 30. To make this a

fair comparison, the average of two pixels is used for the TES algorithm. Because

TES does not utilize polarization, the data TES would be performed on would not be

polarimetric. The linear polarizer cuts out approximately half of the light reaching the

sensor so a non-polarimetric sensor would have approximately twice as much signal.

This is the effect that is mimicked by performing the TES on a two-pixel average.

The rms error across all spectral points in the TES retrieved emissivity at 20◦, 40◦,

and 60◦ viewing angles is 0.0429, 0.0357, and 0.0452, respectively. Using the method

presented here, the error is reduced to 0.0132, 0.0127, and 0.0153. The pixel-to-pixel
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Figure 29. Measured S0 and P (blue) compared with retrieved (black) for a quartz glass
block window with heated blackbody radiance reflecting off of it. The blue (measured)
error bars represent plus/minus one standard deviation across all pixels. The black
(retrieved) error bars represent plus/minus two standard deviations. The white box
on the inlay images show the pixels used in the fitting for each viewing angle. The
plots in red below each pane represents the error between measured and retrieved.
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Index Ret.

Max. Smoothness

Figure 30. Comparison of the emissivity retrieved via maximum smoothness TES (red)
and the method developed in this work (blue) at all three viewing angles. The true
emissivity generated by forward modeling the ellipsometry measured index of refraction
is in green.

variability is also reduced albeit less so. The rms standard deviation, i.e. the size of

the error bars, for the three angles are 4.89·10−3, 4.71·10−3, and 4.50·10−3 compared

to 5.88·10−3, 4.74·10−3, and 7.82·10−3 when using TES.

The main source of error in the TES algorithm is converging to the wrong temper-

ature. One of the basic tenets of the maximum smoothness TES algorithm is that the

downwelling is not spectrally smooth relative to the emissive spectrum. Under clear

sky, this is almost always true, but in this case, the downwelling was a blackbody

and therefore does not have a lot of spectral variability. With that said, the spectral

angle between the retrieved and library emissivity spectra is often what is used in

classification. This is a metric of how similar the spectra are disregarding their overall

absolute value. The spectral angle between the TES retrieved emissivity spectra and

truth at 20◦, 40◦, and 60◦ are 0.77◦, 0.88◦, and 1.14◦, respectively. In this aspect,

the TES algorithm outperforms the index retrieval at low angles. The spectral angles

between the emissivities solved for via the index of refraction retrieval at all three

angles are 1.00◦, 0.98◦, and 0.92◦. The biggest issue with TES is that the emissivity

is viewing angle dependent. The spectral angle between the retrieved emissivity at

20◦, 40◦, and 60◦ and the true emissivity at normal viewing is 0.7◦, 2.6◦, and 6.7◦,
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respectively. By comparison, the spectral angle between the retrieved and the true

index is 1.5◦ and 3.0◦ in the real and imaginary components and remains constant

regardless of viewing angle.

Surface Normal Estimation.

The results presented to this point have all assumed the viewing geometry was

known, but this fitting algorithm can also be adapted to simultaneously solve for

index of refraction and surface normal angle relative to the sensor. To this point, it

has been assumed that the viewing geometry was known a priori but this is not, in

principle, a necessary assumption. Adding a third dimension of spatial information,

namely the angle of a target’s surface normal relative to the image plane, has the

potential to aid in target classification.

First, the Pyrex beaker data was again analyzed this time treating the viewing

angle as an additional fit parameter. This provides an interesting test case because

there is range of different angles going horizontally across the image, which vary in a

way that is easy to model using simple geometry. There are also multiple rows which

should have roughly identical solutions so the self-consistency of the angle retrievals

can be compared. For each pixel in the image, surface temperature, downwelling

temperature, viewing angle, and index of refraction were solved for. The constraints

of the fit are described in Chapter IV, the only additional constraint was forcing the

viewing angle parameter to be between 0◦ and 90◦. The initial guess of viewing angle

is always 45◦. The fitted angle results are shown in Figure 31 and compared with the

true values.

The top two images, (a) and (b), show the true and retrieved angle maps, respec-

tively. The plot below these images shows the median retrieved angle across all rows

(blue line) plus/minus two standard deviations (shaded blue region) compared with
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Figure 31. Retrieved and true surface normal values for all pixels imaging a Pyrex
beaker. (a) shows the true angle map and (b) shows the retrieved angle map. (c)
shows the median across all rows of the image. The blue line is the retrieved angle and
the shaded blue region represents plus/minus two standard deviations across all rows.
The green line is the true angle.
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the true angle values (green). The rms error between the median retieved angle and

the truth across all columns in the image is 5.3◦. It is obvious that much of this error

is due to the behavior of the retrieval as angle goes to zero. The angle retrieval never

goes below about 15◦, even when the true angle is near zero. One cause of this is

the effect discussed in Section 4.3. Because S1 and S2 are added in quadrature, when

polarization is near zero, noise will produce an additive bias to the total polarization

measurement. At 15◦, the band-average P is between 0.03 and 0.07 μW
cm2·sr·cm−1 , which

is consistent with P values where it was shown in Section 4.3 that this biasing starts

to affect the data. Because polarization increases with angle, this bias is interpreted

in the angle fit as a larger surface normal angle than what is actually there. An-

other potential culprit for this error is scene drift, shown in Section 5.2, generating

an artificial polarization signature.

One might think to ignore the polarization if it is near or below this threshold,

as discussed in Section 4.3, but unfortunately S0 changes very slowly with angle at

near-normal viewing geometries. This means that S0 is not effective in estimating

small angles either. Using a sensor with better noise characteristics will drive this

minimum retrievable angle down, but there will always be some point where the

angle is too close to normal to be accurately retrieved. Still, this technique is useful

in giving shape information at larger angles and potentially with additional processing

or better instrumentation could give information about small angles as well.

When pixels with a true surface normal angle of less than 15◦ (the center 12

columns) are ignored, the rms error of the median retrieved angle is 1.4◦. The rms

standard deviation across all rows of the image is 2.6◦.

It is also important to consider what effect fitting the angle might have on the

retrieved index of refraction. This provides a measure of how variations in retrieved

viewing angle from truth affect the index retrieval. If this effect is too large then it is
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not practical to simultaneously estimate index and surface normal, even if the surface

normal estimates are somewhat accurate. Figure 32 shows the retrieved index when

fitting angle (a) compared to assuming angle is known (b). Due to the errors as P goes

to zero near the center of beaker, the 12 center columns are excluded. The rms errors

in n and κ increase from 0.115 and 0.466 to 0.150 and 0.476, respectively when surface

normal angle is included as a fit parameter. The rms standard deviation, i.e. half the

size of the error bars, increases from 0.163 and 0.162 in n and κ when assuming angle

is known to 0.251 and 0.354 when fitting surface normal angle. Because the scene

geometry is known very well in advance, it is unsurprising that allowing variations

from the expected angle increases error. It is promising, however, that the index

retrieval does not get significantly worse when simultaneously fitting the angle.

Another way to compensate for the error at near-normal viewing angles is to

allow the sign of P to vary at every spectral point. As discussed earlier this has some

drawbacks which will be seen and discussed later in this section. Figure 33(a) shows

the retrieved angles when the sign of P is allowed to vary. While this is able to match

angles less than 15◦, it still is unable to retrieve angles less than about 10◦. The

major contributor to this limitation seems to be scene drift. Figure 33(b) shows the

(a) (b)((b))

Figure 32. Retrieved index incorporating surface normal angle as a fit parameter (a)
compared to index retrieval assuming the angle is known a priori (b). The blue line
represents the median retrieval across pixels and the shaded blue region represents
plus/minus two standard deviations across pixels. Because of the errors as total polar-
ization, P , goes to zero near the center of beaker, the 12 center columns are excluded
from this plot.
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results of the pixel-by-pixel angle retrieval using only the top 7 rows of the image,

where scene drift was previously shown to be lowest. There still appears to be some

error for angles less than about 5◦ which may be due to some small scene drift. In

total, the rms error in angle is reduced to 2.8◦ when only using the top 7 rows as

compared to 4.0◦ using all rows. Both of these are better than the rms error of 5.3◦

when the sign of P is not allowed to vary spectrally. There is still the issue of the

contrast reversal between reflected and emitted radiance when scene drift causes the

P to have the wrong sign, however.

This fitting can also be done using all surface normal angles in conjunction with

one another which imposes the additional constraint that each pixel along a row of

the image must be the same material. Just as in Section 5.2, the fit was then done

independently on each row of the image, but this time the viewing angles of each pixel

in the row (40 in total) are treated as fit parameters. Figure 34 shows the results of

this fit. Again the effect of S1 drifting positive are evident. The majority of the pixels

in a given row have negative P dictating that the object temperature is greater than

the downwelling temperature for that row. When P for a given pixel is positive, the

closest the fit can get to replicating this is to set the surface normal angle, and thus

the modeled P , to zero. Figure 34 (b) shows the surface normal retrievals for only

the top 7 rows of the image where scene drift is lowest. While the effect of P going

positive is still evident, it is less pronounced, only occuring at angles less than about

5◦.

The rms error in surface normal is 3.85◦, which is clearly driven the error at small

surface normal angles and scene drift. For the 7 rows at the top of the image, where

temperature drift is the smallest, the rms error is 2.28◦. The rms error for only the

outer 10 pixels where the surface normal is the greatest is only 1.08◦. The rms error

in the retrieved index performing the fit this way is 0.228 in the real component and
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Figure 33. Retrieved (blue) and expected (green) surface normal angles ascribing a
sign to P at each spectral point. The shaded blue region represents plus/minus two
standard deviations across rows. (a) shows the results of using all rows of the image
while (b) shows the results of only using the top 7 rows of the beaker. This shows that
the error in (a) at small angles is most likely driven by scene drift which is worse at
the bottom of the beaker than at the top.
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Figure 34. Retrieved (blue) and expected (green) surface normal angles when fitting
the index for every row, concatenating all viewing angles into one fit. The shaded
blue region represents plus/minus two standard deviations across rows. (a) shows the
results of using all rows of the image while (b) shows the results of only using the top 7
rows of the beaker. The error in the retrieved angle as the true angle approaches zero
is again an effect of scene drift.
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0.223 in κ. The rms standard deviation across all rows is 0.183 and 0.144. When only

the top 7 rows are used, the error is reduced to 0.106 and 0.150, and the standard

deviation is reduced to 0.095 and 0.083. As expected, this is better than the pixel-

by-pixel fits demonstrating the utility of using multiple viewing angles to constrain

the fit.

As was shown in Section 5.2 and previously in this section, scene drift and other

factors made this dataset somewhat difficult to work with. To further test simul-

taneously estimating surface normal angle and index of refraction, the quartz block

data was also examined. The quartz block presents a different test case for the angle

retrieval code. Here each pixel is seeing roughly the same angle, with only a slight

change going left to right across the image due to the pixel FOV. This provides a

better test of the self-consistency of the retrieval. For this, the multiple viewing an-

gles of nominally 20◦, 40◦, and 60◦ are again used in conjunction with one another to

constrain the fit. Unlike with the beaker dataset, however, the true surface normal

angles cannot be estimated from the image itself and are therefore more uncertain.

The alignment of the block was done with a protractor so estimated uncertainty in

the ”true” angle is approximately 3◦. Each of the three angles is an independent

parameter in the fit. Again, the fit is performed independently for each pixel that

viewed the object at all three angles.

The retrieved angles are 20.58 ± 1.92◦, 41.34 ± 3.24◦, and 58.00 ± 3.84◦. Each of

these angles are consistent with the expected values. Additionally the uncertainties,

reported as two standard deviations, are highly skewed by outliers. For normally dis-

tributed values, 95% of pixels should lie with two standard deviations of the median.

For this dataset the actual 95% confidence bounds are 20.58 ± 0.80◦, 41.34 ± 1.17◦,

and 58.00 ± 1.30◦.

On top of all of this, there is some inherent variability in these measurements
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because each pixel has a slightly different viewing angle relative to the surface normal.

There is approximately a 0.5◦ difference between the expected surface normal at the

left edge of the window compared to the right edge. 53.7%, 53.3%, and 51.1% of

pixels lie within ± 0.25◦ of the median for the three angles, respectively.

The retrieved index of refraction, shown in Figure 35 is also very accurate even

when simultaneously solving for viewing angle. The rms error is the real and imag-

inary components is 0.081 and 0.071. Recall the error when holding the angle fixed

was 0.072 and 0.062 so again this is slightly worse, but not significantly so. The

main difference between fitting the angle and holding it fixed is the pixel-to-pixel

variability. The rms standard deviation across all pixels is 0.135 in both n and κ

when fitting angle compared to 0.060 and 0.057 when holding angle fixed. Again,

however, outliers heavily skew this standard deviation when fitting angle. When pix-

els where the retrieved angles were outside of the 95% confidence bounds are ignored,

the pixel-to-pixel variability is reduced to 0.036 and 0.035 in the real and imaginary

components. The retrieved downwelling and object temperatures when these outlier

pixels are ignored is 385.2 ± 1.2 K and 298.8 ± 0.5 K.

Similar results are seen when analyzing the SiC dataset as well. The median

retrieved angles across are pixels are 23.1 ± 1.6◦, 37.1 ± 1.0◦, and 55.3 ± 1.4◦. The

reported uncertainty represents two standard deviations across all pixels. This is

another case where the true angles are not well known, but the retrievals are at least

close to the expected. The index of refraction retrieval also remains accurate, the rms

error in n and κ is 0.084 and 0.069, respectively which is very close to the error of

0.073 and 0.067 when angle is held fixed.
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Truth (Ellipsometer)

Retrieved

Figure 35. Retrieved (blue) and true (green) index of refraction for a quartz glass
window when simultaneously fitting viewing angle. The solid blue line represents the
median retrieval across all pixels and the shaded blue region represents plus/minus two
standard deviations. The green line is taken from ellipsometry measurements.

Other Considerations.

Single Angle vs Multiple Angles.

With the exception of some of the simulated datasets and some of the beaker data

analysis, all the work presented thus far has used multiple angles to constrain the

fit. It is also of value to see how the fit performs without multiple viewing angles

providing constraints, specifically on the quartz and SiC datasets. For the sake of a

more accurate comparison, three pixels are averaged for each single angle fit to ensure

than any improvement in the multiple angle fits are not just due to the boost in SNR

from having three measurements. Instead of 20◦, 40◦, and 60◦, the angles used are

the median retrieved angles from the previous section. Figure 36 shows the results of

individually fitting each of the viewing angles for the quartz window data.

The error in the 40◦ fit illustrates one of the fundamental issues with utilizing index

of refraction measurements. There are many local minima where drastically different

indices of refraction can produce very similar reflectivity and emissivity spectra and

thus produce very similar radiance signatures. With noise, or potentially systematic
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Figure 36. Retrieved (blue) and true (green) index of refraction for a quartz glass
window using only a single viewing angle. The solid blue line represents the median re-
trieval across all pixels and the shaded blue region represents plus/minus two standard
deviations. The green line is taken from ellipsometry measurements.
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biasing, these local minima can become the global minimum. In this case, radiance

spectra is better modeled by these retrieved values than the truth with an rms error

in S0 and P of 2.45 and 1.71 μW
cm2·sr·cm−1 compared to 4.42 and 2.15 μW

cm2·sr·cm−1 when

using the expected values based on the ellipsometer measured index of refraction.

The median retrieved temperatures for the 40◦ fit were Td = 389.1 K and Te = 297.9

K which are very close to the temperatures of 386.4 K and 298.1 K retrieved using

all three angles. This indicates that the reflectively and emissivity spectra obtained

by forward modeling this index is close that that of forward modeling the true index,

which is born out in the data. The rms difference between the retrieved reflectance

and the truth is only 1.7%, whereas the rms difference between the real and imaginary

components of retrieved index and truth are 0.5 and 0.6. These errors values in index

represent 36.6% and 72.2% of the mean n and κ, respectively. This further illustrates

that drastically different indices of refraction can produce similar spectra potentially

allowing systematic errors in the measured radiance to dramatically skew the retrieved

index of refraction.

The fits at 20◦ and 60◦, however, show much better results. The rms error in

n and κ is 0.133 and 0.265 for the 20◦ case and 0.130 and 0.075 for the 60◦ case.

This mimics what was seen in the simulated data where large viewing angles, because

they tend to have more polarization, are better suited for fitting index of refraction.

It should be noted that both of these fits still perform worse than using all three

angles in conjunction with one another where the rms error was 0.072 and 0.062 in

the real and imaginary components, respectively. Recall that the single angle fitting

is utilizing a three pixel average, so this indicates that using multiple viewing angles

is actually adding independent information to the fit as opposed to simply reducing

the SNR. There is more pixel-to-pixel variability when only using a single angle in

the 20◦ fit, but the 60◦ fit seems to perform on-par with the three angle fit in this
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measure. The rms standard deviation across all pixels was 0.129 in n and 0.114 in κ

for the 20◦ fit. For the 60◦ fit, the rms standard deviation was 0.061 and 0.060. For

the fit using three angles, the rms standard deviation was 0.060 and 0.057 in the real

and imaginary components , respectively. Again, this illustrates that the fit performs

better from farther off-nadir viewing geometries.

Again, these fits can be compared with the maximum smoothness TES algorithm.

While a single viewing angle makes the fit more susceptible to converging to the wrong

solution in index of refraction, it also means that the S0 and P spectra for a given

angle can be better replicated since the fit is only trying to optimize that one angle.

Again, twice as many pixels are averaged for the TES algorithm input to mimic the

effects of a non-polarimetic sensor. In this case, since three pixels were averaged for

the index fit, six pixels are averaged for the TES algorithm. The results for each of

the three angles are shown in Figure 37.

The rms difference between the TES-estimated emissivity and truth is 0.0427,

0.0437, and 0.0352 for the three angles. The index retrieval again significantly reduces

this error to 0.0213, 0.0174, and 0.0153. Again, it is seen that despite the large error in

index of refraction at 40◦, the emissivity is still retrieved quite accurately. As before,

the rms error in the TES-estimated emissivity is primarily due to the algorithm

fitting to the wrong temperature. The spectral angle between the retrieved and true

emissivities for all three angles when fitting index is 1.23◦, 0.98◦, and 0.88◦ compared

to 0.95◦, 0.95◦, and 1.00◦ when using maximum smoothness TES. As in the multi-

angle case, the index retrieval seems to perform better relative to TES the further

off-nadir the sensor is.

Unlike the multiple angle fit, the pixel-to-pixel variability seems to be less when

using TES compared to using the index retrieval from a single angle. The rms stan-

dard deviation across all pixels (i.e. half the size of the errorbars in Figure 37) is
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Figure 37. Comparison of the emissivity retrieved via maximum smoothness TES (red)
and from forward modeling the retrieved index of refraction using only a single viewing
angle (blue). The true emissivity generated by forward modeling the ellipsometry
measured index of refraction is in green.

4.8·10−3, 3.4·10−3, and 4.3·10−3 when using maximum smoothness. These increase

to 17.8·10−3, 4.7·10−3, and 5.4·10−3 when using the index retrievals from a single

angle. This further indicates that multiple viewing angles provide more constraining

information than simply improving SNR by using multiple measurements.

Fitting Using Only S0.

While the primary focus of this work is on utilizing polarimetric hyperspectral

information, it is also of interest to see how this technique might perform with a

purely hyperspectral dataset. The full P-HSI datacube can be reduced to an HSI

datacube by only using S0. To reproduce the effect of not having a polarizer in the

instrument, again a two-pixel average is used when fitting the index of refraction.

The results of fitting the quartz window data using only S0 are shown in Figure

38. The rms error between the median retrieved index and truth is 0.147 in n and

0.205 in κ — which is approximately a factor of two worse than when using both S0

and P in conjunction with one another. The pixel-to-pixel variability on the other

hand is actually slightly reduced when only using S0. The standard deviation across

all pixels is 0.048 and 0.056 in n and κ, respectively, compared with 0.060 and 0.057
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Figure 38. Retrieved (blue) and true (green) index of refraction for a quartz glass win-
dow using only a S0 in the fit. The solid blue line represents the median retrieval across
all pixels and the shaded blue region represents plus/minus two standard deviations.
The green line is taken from ellipsometry measurements.

when using both S0 and P . The retrieved downwelling and object temperatures are

also slightly more accurate 387.9±1.7 and 293.9±2.2 K compared to the expected

388.2 and 294.7 K. Recall the retrieved temperatures when using both S0 and P were

386.4±1.4 and 298.1±1.2 K.

Figure 39 shows the retrieved S0 values (black) compared with the measured

(blue). For dramatically undersampling the spectrum — 583 spectral points are

modeled by 15 knots — the retrieval does fairly well. Still, there are some errors

20° 40° 60°

Figure 39. Measured S0 (blue) compared with retrieved (black) for when fitting only
S0 for the quartz block data. The error bars represent plus/minus two standard devi-
ation across all pixels. The plots in red below each pane represents the error between
measured and retrieved.
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generated by this undersampling which are evident in the residuals, specifically the

oscillations near 1100 cm−1. The rms difference between the median retrieved and

measured S0 is 0.129 μW
cm2·sr·cm−1 , which interestingly is not much of an improvement

over the 0.133 μW
cm2·sr·cm−1 error in S0 when fitting both S0 and P .

Similar results are also seen when examinining the beaker dataset. Figure 40

shows the retrieved index using only S0, but fitting each row of the image as opposed

to each pixel. Again, the error is significantly worse than when using both S0 and P .

The rms error in n and κ is 0.235 and 0.239, respectively, compared to 0.135 and 0.180

when using both S0 and P . This error is very likely due to the fit falling into a local

minimum, however. The rms error in S0 across all pixels and spectral points is 0.153

μW
cm2·sr·cm−1 compared to a 0.146 μW

cm2·sr·cm−1 rms error in S0 when forward modeling

the fitted values using both S0 and P . This makes the results difficult to analyze but

again emphasizes the point that adding polarimetric information can greatly aid the

fit in avoiding these local minima.

5.3 Outdoor Measurements

To test the refractive index retrieval on real data under atmospheric downwelling,

an experiment was conducted on the AFIT roof. The test was done on the rooftop

to avoid adjacency effects from nearby buildings from affecting the data. A number

of different materials were arrayed on a board which could be adjusting to different

angles. This allowed for multiple viewing angles to be collected with minimal time

difference between each angle. This is analogous to a sensor flying past or around a

target of interest and observing it from multiple angles. Figure 41 shows the layout of

the target array. The instrument was set up approximately 10 m from the target board

corresponding to a sampling distance of approximately 3.5 mm per pixel providing

many pixels on all targets. The instrument was tilted to look down at a declination
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Figure 40. Retrieved (blue) and true (green) index of refraction for a heated Pyrex
beaker using only a S0 in the fit. The solid blue line represents the median retrieval
across all pixels and the shaded blue region represents plus/minus two standard devi-
ations. The green line is taken from ellipsometry measurements.

angle of 10◦. The primary targets of interest for this research are the Silicon Carbide

blocks, the fused silica wafers, and the sapphire glass. The gold mirrors are in the

scene to provide an estimate of directional atmospheric downwelling and the infragold

gives an estimate of diffuse downwelling.

Thermocouples were attached to samples of the SiC and fused silica placed outside

the scene to get rough estimates of the temperatures of those materials at the time of

the data collect. When the instrument was calibrating, temperature measurements

of each object on the board were taken using an Exergen D501 infrared thermometer.

Additionally, air temperature, relative humidity, and pressure measurements were

taken intermittantly throughout the data collect using a Kestrel 4000 series handheld

weather station.

In total, eight tests were done over the course of two days with a variety of in-

strument settings, each observing the targets at a number of different viewing angles.

The settings for each test are summarized in Table 2. The instrument stopped record-

ing datacubes during test 14-5 and had to be rebooted so that test did not provide
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Figure 41. Layout of the target array measured from the AFIT rooftop. The targets
of interest for this work are the SiC block, fused silica wafers, and sapphire glass. The
gold mirrors and infragold provide estimates of directional and diffuse downwelling,
respectively.

any data. For each test except for 13-1, calibration cubes were collected at all four

polarizer angles at the beginning and end of each test as opposed to the beginning

and end of each individual viewing angle measurement. This was done in an attempt

to minimize scene drift. Because of complications with the control software, test 13-1

was conducted using the more traditional method of calibrating before and after each

viewing angle. For test 14-7 an additional calibration was performed in the middle of

the test. Most of the analysis presented in this section, unless stated otherwise, are

done on test 14-4 although all datasets have been at least partially analyzed.

Silicon Carbide.

One of the targets of interest in the scene was SiC. Unlike the highly pure wafer

used in the laboratory measurements, this was a ceramic block of SiC. Because this

is a ceramic material, the lattice structure is expected to be randomly distributed

meaning the birefringence model was not necessary to describe the index of refraction
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Table 2. Summary of settings for each test collected from the AFIT roof on 13 and
14 April 2016. The instrument stopped recording datacubes during test 14-5 so no
useable data was obtained from that test.

ID Start
Time

(GMT)

End
Time

(GMT)

Viewing
Angles

Res.
[cm−1]

# Acq. Window Size

13-1 1852 1925 70, 75, 80 8 8 320x150
14-1 1406 1500 20, 40, 60 8 8 320x256
14-2 1501 1525 20, 40, 60 16 4 320x256
14-3 1532 1557 20, 40, 60 8 2 320x256
14-4 1902 1944 30, 50, 70 1 2 320x80
14-5 2015 2025 30, 50, 70 1 2 320x256
14-6 2042 2140 30, 50, 70 4 4 320x256
14-7 2141 2241 20, 30,

40, 50,
60, 70

8 4 320x256

for this sample. This adds a complication, however, in that there is less control over

contaminants which could potentially be an issue based on what is seen in the data.

Figure 42 shows the measured S0 and P compared to what is expected based on

the expected index of refraction and the measured object temperature and down-

welling radiance. Because the SiC sample was black in the visible, it was difficult to

properly align in the ellipsometer. This caused significant errors in the ellipsometry

measurement, so instead, the expected values for the index of SiC were taken from

the database in the Woollam software package. Clearly, there is significant error,

especially at frequencies below 1000 cm−1. There is also significantly more pixel-to-

pixel variability in this spectral band. Figure 43 shows the spatial distribution of the

radiance averaged over the spectral band from 875-975 cm−1.

It is clear that there is a non-random spatial distribution to this spectral feature.

This is possibly an indication of contaminants which are spread in varying concen-

trations across the SiC block. SiC becomes very reflective below 1000 cm−1 and this
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Figure 42. Measured (blue) compared with expected (green) S0 and P for the SiC block
data. The shaded blue region represent plus/minus two standard deviation across all
pixels.
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Figure 43. Band-averaged radiance map of the SiC used in outdoor testing. The
average is taken over all spectral points from 875-975 cm−1. This shows a clear spatial
patterning of the spectral anomoly seen in Figure 42.

contaminant seems to be blackbody-like, raising the effective emissivity of the sam-

ple. To properly account for this effect, some sort of mixing model would have to be

incorporated, but that is outside the scope of this work. In spite of all of this, the

fit is still applied to the data. Figure 44 shows the retrieved index of refraction. In

order to partially account for the potential contaminants, two oscillators are used in

the fitting. This is probably not the best way to compensate for the effect, but it can

at least partially account for it.

The ”true” index of refraction presented is merely the index of refraction for SiC,

taken from a database as described earlier. Without knowing what the contaminant

might be and without being able to get accurate ellipsometry data off of the sample,

it is impossible to get a good estimate of what the true index of refraction should

look like. This means that comparing the index of refraction fit is not really useful.

Instead, it is more illuminating to see how well the fitted values replicate the measured

S0 and P spectra. This is shown in Figure 45.

Clearly the fitted parameters do a much better job of replicating the S0 and

P spectra than the expected parameters do. Still, however, there are significant
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Figure 44. Retrieved (blue) and ”true” (green) index of refraction for a ceramic SiC
block. The solid blue line represents the median retrieval across all pixels and the
shaded blue region represents plus/minus two standard deviations. The green line
is taken from the SiC values from the JA Woollam ellipsometry WVASE software
database. [31] As discussed, due to complications, likely contamination, this is not a
good model for the index of refraction of the block. Without knowing the contaminant,
however, it is impossible to get a good estimate of the ”true” index of refraction.

differences between the retrieved S0 and P and what is measured. This indicates the

need to develop and incorporate into the fit some kind of mixing model, but that

is outside the scope of this work. Another thought on what could be causing the

variations from expectation below 1000 cm−1, where SiC becomes highly reflective,

is if something warm near the SiC block is being diffusely reflected into the sensor.

This would also mean the SiC block violates the smooth surface assumption used in

the rest of this work. To test this hypothesis, an option to include adjacency effects

was added to the fit. Essentially, this accounts for the downwelling as some mix of

sky downwelling and blackbody-like adjacency effects from nearby objects. Both an

adjacency percentage, accounting for how much of the downwelling is coming from

the nearby object and the temperature of the object are added as fit parameters.

Figure 46 shows the results of this retrieval.

Again, however it is of more interest to see how well the fit replicated the measured

spectra. The retrieved and measured S0 and P at all three viewing angles are shown in
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Figure 45. Measured (blue) compared with retrieved (black) S0 and P for the SiC block
data using the atmospheric downwelling fit. The shaded regions represent plus/minus
two standard deviation across all pixels.
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Truth (Literature)

Retrieved

Figure 46. Retrieved (blue) and ”true” (green) index of refraction for a ceramic SiC
block after adding adjacency effects to the fit. The solid blue line represents the
median retrieval across all pixels and the shaded blue region represents plus/minus
two standard deviations. The green line is taken from the SiC values from the JA
Woollam ellipsometry software database. [31] As discussed, due to complications, likely
contamination, this is not a good model for the index of refraction of the block. Without
knowing the contaminant, however, it is impossible to get a good estimate of the ”true”
index of refraction.

Figure 47. The rms difference between the retrieved and measured across all viewing

angles, spectral points, and pixels is 0.260 μW
cm2·sr·cm−1 in S0 and 0.193 μW

cm2·sr·cm−1 in P .

This is significantly better than the rms error of 0.300 μW
cm2·sr·cm−1 and 0.357 μW

cm2·sr·cm−1

when adjacency effects are not accounted for. It is unclear, however, how much of this

effect is simply due to having more fit parameters rather than those fit parameters

truly describing the actual physics in play.

Fused Silica Wafer.

Another material examined in the outdoor test was a set of fused silica (quartz)

glass wafers. These have a virtually identical index of refraction to the quartz glass

block window examined earlier. Unlike the SiC data, the expected and measured S0

and P are quite similar as shown in Figure 48, though there are some discrepancies

especially the 70◦ viewing angle.
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30°

50°

70°

Figure 47. Measured (blue) compared with retrieved (black) S0 and P for the SiC
block data when including adjacency effects in the fit. The shaded regions represent
plus/minus two standard deviation across all pixels.

30° 50° 70°

Figure 48. Measured (blue) compared with expected (green) S0 and P for the fused
silica wafer data. The shaded blue region represent plus/minus two standard deviation
across all pixels.

123



www.manaraa.com

Truth (Ellipsometer)

Retrieved

Figure 49. Retrieved (blue) and true (green) index of refraction for a fused silica wafer.
The solid blue line represents the median retrieval across all pixels and the shaded blue
region represents plus/minus two standard deviations. The green line is taken from
the ellipsometry measurements.

The retrieval done on this data is also quite accurate. Figure 49 shows the retrieved

index. The rms error between the median retrieved index and the true index is 0.164

and 0.158 in n and κ, respectively. The fit is also very consistent pixel to pixel, the

rms standard deviation is 0.068 for n and 0.085 for κ. The largest source of error

seems to be in the atmospheric retrieval where the water lines specifically show the

greatest discrepency between measured and retrieved. The effect of this is seen when

comparing the retrieved S0 and P with the measured in Figure 50.

Because of this error in the atmospheric compensation, it is interesting to see how

the fit performs when the atmosphere is held fixed. Specifically, the gold mirror is

used to get an in-scene estimate of the downwelling radiance. To correct for the small

— but possibly significant — emissivity of the gold mirror, greybody radiance with

an emissivity of 0.03 and a temperature of 305 K is subtracted from the gold mirror

pixels radiance to give a more accurate estimate of the true downwelling. This is

used as the downwelling radiance in the fit instead of fitting to the best modeled

atmosphere. The results of this fit are shown in Figure 51.
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30° 50° 70°

Figure 50. Measured (blue) compared with retrieved (black) S0 and P for a fused
silica wafer. The shaded regions represent plus/minus two standard deviation across
all pixels.

Truth (Ellipsometer)

Retrieved

Figure 51. Retrieved (blue) and true (green) index of refraction for a fused silica
wafer when not fitting the atmospheric parameters. Atmospheric downwelling radiance
is instead estimated from the gold mirror placed in the scene. The solid blue line
represents the median retrieval across all pixels and the shaded blue region represents
plus/minus two standard deviations. The green line is taken from the ellipsometry
measurements.
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In this case, the fit is more accurate and self-consistent than when fitting the

atmospheric parameters. The rms error in the median retrieved index is 0.155 in

the real component and 0.117 in the imaginary. The rms standard deviation in n is

0.059, and in κ, it is 0.056. There is still a significant difference in the retrieved P ,

however, especially at larger viewing angles and in the ozone band. The amount of

polarization is underestimated in this region which may indicate that the assumption

of the downwelling radiance being unpolarized is not valid. A more detailed study

would need to be conducted to properly answer this question, however.

Once more, these results are compared with the maximum smoothness TES al-

gorithm. Again, a two-pixel average is used when performing the TES fit to mimic

the effect of a sensor without a polarizer. Because TES requires atmospheric com-

pensation as an input, the fixed atmosphere index retrieval is used as the basis of

comparison. The results of the comparsion are shown in Figure 52. The error be-

tween 1200 and 1250 cm−1 in the 70◦ retrievals are most likely due to noise causing

the measured radiance to be less than the measured downwelling radiance at these

pixels. While some compensation was done to account for the small emissivity of

the gold mirror, without the true emissivity spectra of the mirror, the simple 0.03

emissivity greybody correction may not be sufficient.

Still, for most wavelengths, the retireval is very accurate. The rms error in the

retrieved emissivity was 0.025, 0.036, and 0.033 for 30◦, 50◦, and 70◦, respectively.

The TES algorithm performs better at 30◦ with an rms error of 0.010, but worse

at 50◦ and 70◦ — rms error of 0.049 and 0.079. When spectral points above 1200

cm−1 are ignored, the rms error at 70◦ is reduced to 0.024 for the index retrieval and

0.032 for the TES algorithm. The spectral angle between the retrieved and expected

emissivities are 1.5◦, 3.0◦, and 3.3◦ for the index retrieval, and 0.8◦, 2.4◦, and 7.9◦ for

the TES algorithm. Again, when ignoring points over 1200 cm−1, the spectral angle
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30° 50° 70°

Index Ret.

Max. Smoothness

Figure 52. Comparison of the emissivity retrieved via maximum smoothness TES
(red) and the method developed in this work (blue) at all three viewing angles for a
fused silica wafer. The true emissivity generated by forward modeling the ellipsometry
measured index of refraction is in green.

difference in the 70◦ retrievals is signicantly reduced to 2.1 for the index retrieval

and 3.0◦ for the TES. The most noticable difference between the two methods is the

pixel-to-pixel variability. The rms standard deviation across all pixels — i.e. half the

size of the errorbars in Figure 52 — is 0.004 for all angles using the index retrieval.

When using the TES algorithm, this is increased to 0.040, 0.026 and 0.014 for the

three angles. Finally, the retrieved temperatures are also important to consider. For

the index retrieval, the estimated object temperature is 301.2±0.4 K compared to the

expected based on in-situ measurements with the contact probe of 304.3±1.0 K. The

TES retrieved temperatures were 302.2±3.1 K, 306.9±1.9 K, and 304.2±1.0 K at the

three angles.

It is significant to see what effect, if any, spectral resolution has on the retrieval.

Figure 53 shows the retrieval from data at 8 cm−1. The fit is almost identical to the

fit conducted on the 1 cm−1 data. The rms difference between the median retrieved

and expected index is 0.162 in the real component and 0.171 in the imaginary. The

pixel-to-pixel consistency is also almost identical to the 1 cm−1 fit. The rms standard

deviation across all pixels is 0.062 in n and 0.080 in κ.
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Truth (Ellipsometer)

Retrieved

Figure 53. Retrieved (blue) and true (green) index of refraction for a fused silica wafer
based on data taken at 8 cm−1. The solid blue line represents the median retrieval across
all pixels and the shaded blue region represents plus/minus two standard deviations.
The green line is taken from ellipsometry measurements.

It is also interesting to see how this fit will perform using only a single viewing

angle. Figure 54 shows the results of performing the retrieval on all three viewing

angles independently. As with the laboratory data, there is generally good agreement

between the retrieved and expected, but the fit is susceptible to converging to wildly

different solutions based on small measurement errors. The 70◦ data where this effect

is worse seems to converge to two sets of solutions, one very near the true solution and

the other, slightly more prevalent solution is what is shown in the median retrieval.

Again, this illustrates one of the difficulties with estimating index of refraction as well

as the added utility of incorporating multiple viewing geometries into the fit.

Finally, as in the last section, the fit is also examined using only S0. Figure 55

shows the retrieval fitting only to the S0 data. Again, as with the laboratory data,

this fit is not nearly as accurate as when using both S0 and P , but it is still reasonably

accurate. The rms error is 0.264 in n and 0.546 in κ. The pixel-to-pixel variablility

is also larger. The rms standard deviation across all pixels is 0.115 for n and 0.132
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30° 50°

70°

Figure 54. Retrieved (blue) and true (green) index of refraction for a fused silica wafer
using only a single viewing angle. The solid blue line represents the median retrieval
across all pixels and the shaded blue region represents plus/minus two standard devi-
ations. The green line is taken from ellipsometry measurements.
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for κ. This is a further demonstration of the utility of combining polarimetric and

hyperspectral information in this fit.

Sapphire Glass.

The final material examined for this work was a sample of sapphire glass. Despite

being a glass, this material well modeled by the Lorentz oscillator model. Because

sapphire is so emissive across much of the LWIR, ellipsometry measurements were

difficult to make. Because of this, again the index of refraction values were taken

from the Woollam software database.[31] Unlike the SiC, however, reasonable mea-

surements were obtained for a small part of the band of interest. In this region, there

is reasonable agreement between the measured and modeled values.

Figure 56 shows the retrieved index for sapphire using the Lorentz oscillator model

to fit the index. For the most part, there is very good agreement except from about

875-900 cm−1. The rms error in n and κ are 0.060 and 0.017, respectively. Addition-

ally the fit is very consistent as the rms standard deviation across all pixels is only

0.010 and 0.011 in the real and imaginary component. While this fit does a good job

of retrieving the index of refraction, the retrieved values do not model the measured

S0 and specifically P well. Figure 57 shows the retrieved S0 and P compared to the

measured.

Sapphire is highly birefringent, but because this was a glass sample it was expected

that the lattice structure would be mixed, essentially negating the effect of the bire-

fringence and giving the material an effective index of refraction roughly equal to the

average of the ordinary and extrodinary ray indices. This was not the case, however,

as is clearly evident in Figure 57. The measured P being significantly greater than

the retrieved was an indicator of birefringence before in the SiC laboratory data and

again birefringence is the most likely cause of the discrepency between measured and
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Truth (Ellipsometer)

Retrieved

Figure 55. Retrieved (blue) and true (green) index of refraction for a fused silica wafer
using only S0 information in the fit. The solid blue line represents the median re-
trieval across all pixels and the shaded blue region represents plus/minus two standard
deviations. The green line is taken from the ellipsometry measurements.

Truth (EMA Model)

Retrieved

Figure 56. Retrieved (blue) and ”true” (green) index of refraction for a sapphire glass
window. The solid blue line represents the median retrieval across all pixels and the
shaded blue region represents plus/minus two standard deviations. The green line
is taken are the values for the index of refraction of sapphire from the JA Woollam
ellipsometry software database. [31]
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30° 50° 70°

Figure 57. Measured (blue) compared with retrieved (black) S0 and P for a sapphire
window. The shaded regions represent plus/minus two standard deviation across all
pixels.

expected here. Because of this, the birefringence model used for the SiC laboratory

data was added to the retrieval code. Figure 58 shows the retrieved e- and o- ray

indicies of refraction.

Again, this fit is very accurate indicating that the index of refraction can be

retrieved under atmospheric downwelling, even for birefringent materials. The rms

error in the ordinary ray index is 0.032 and 0.015 in n and κ and the rms error in

the extraordinary index is 0.040 and 0.005. The fit is also self consistent with an rms

standard deviation across all pixels of 0.009 and 0.010 in n and κ for the o-ray and

0.012 and 0.004 for the e-ray. Accounting for birefringence also does a much better

job of replicating the measured S0 and P , although there are still some unexplained

artifacts. Figure 59 shows the retrieved S0 and P compared with the measured values.

5.4 Summary

In this section, results were presented retrieving index of refraction from synthetic,

laboratory, and outdoor polarimetric hyperspectral radiance measurements. The syn-
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Truth (Literature)

Retrieved

(a) (b)

Figure 58. Retrieved (blue) and true (green) index of refraction for both the o- (plot
a) and e-ray (plot b) of a sapphire glass window. The solid blue line represents the
median retrieval across all pixels and the shaded blue region represents plus/minus two
standard deviations. The truth values were taken from existing models used in the JA
Woollam IR-VASE ellipsometry software package for both the o- and e- ray indices of
refraction for Sapphire. [31]

30° 50° 70°

Figure 59. Measured (blue) compared with retrieved (black) S0 and P for a sapphire
window when birefringence is accounted for in the fit. The shaded regions represent
plus/minus two standard deviation across all pixels.
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thetic data helped generate a qualitative understanding of how certain variables affect

the retrieval. As expected, the fit improves with decreasing NESR, increasing thermal

contrast, and increasing the number of viewing angles used. Interestingly, spectral

resolution does not seem to have a large effect on the retrieval accuracy. Laboratory

data showed that index of refraction can be retrieved to within 0.08 rms error for both

a SiC wafer and fused silica window while simulataneously estimating object temper-

ature and a downwelling temperature representing the brightness temperature of the

downwelling radiance. Additionally, the viewing angle can be added as an additional

fit parameter and accurately retrieved to within 5◦ while maintaining the accuracy of

the index retrieval. Outdoor measurements show that index of refraction can still be

accurately retrived even with spectrally structured atmospheric downwelling radiance.
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VI. Conclusions

This work presents novel instrumentation, a unique set of data, and a methodol-

ogy for accurately estimating the spectrally-varying complex index of refraction from

passive measurements without a priori knowledge of downwelling radiance and object

temperature. Specifically, polarimetric hyperspectral imaging data made at one or

more non-nadir viewing angles were fit to a physics-based model where n, κ, surface

temperature, downwelling radiation (and in some cases surface normal angle) were

parameters estimated by nonlinear regression. By utilizing physics-based models, the

number of parameters needed to describe the index of refraction can be dramatically

reduced. For smooth, specularly-reflecting surfaces, the Fresnel equations can be

used to relate index of refraction to reflectivity, which in turn can be used to model

the measured polarimetric hyperspectral radiance. Because the spectral variation of

index of refraction is modeled, reducing the number of parameters, the problem of de-

termining index of refraction from polarimetric hyperspectral radiance measurements

can be made overdetermined while simulatanously solving for downwelling radiance

and object temperature.

Various aspects of the performance of this methodology were assessed using both

synthetic and measured data. Simulated data qualitatively demonstrated how the

index estimation depends on thermal contrast, sensor NESR, spectral resolution, and

the number and range of viewing angles. From these datasets, fit accuracy scales ap-

proximately exponentially with temperature contrast and linearly with sensor NESR

at least over reasonable ranges for each quantity. Spectral resolution had little effect

on the accuracy of index estimates, and this was largely driven by the trade-off of

increased NESR with improved resolution. However, both synthetic data and mea-

surements were performed for short distances where highly structured atmospheric

absorption features could be ignored, so this observation may not hold for longer path
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data collections. Viewing farther off nadir generally improved the index estimates, a

result expected given the increased polarization with angle. Finally, measurements at

multiple angles significantly increased the accuracy of index estimates when compared

to those made using a single viewing angle.

The complex index of refraction retrieval method was tested on a series of measure-

ments taken indoors with controlled laboratory conditions. The first dataset made

observations a heated Pyrex beaker which produced a vertical temperature gradient

and a range of surface normals laterally traversing the beaker. The index of refraction

was retrieved to with 0.090 rms error in the real component and 0.222 in the imag-

inary component. Significant variability in the index estimates were observed and

resulted from radiometric scene drift caused by the hot plate’s intermittent heating

cycles. When only pixels with the least scene drift were used in the retrieval, the

rms error was reduced to 0.085 and 0.179 in n and κ, respectively. Additionally, the

retrieval results were found to be uncorrelated with beaker temperature. These re-

sults demonstrated the ability to retrieve n and κ in P-HSI measurements of a target

dominated by thermal emission.

Next, a SiC wafer target was examined in reflection mode by using a heated,

wide-area blackbody reflecting off the wafer to induce a necessary thermal contrast.

The birefringent nature of this crystalline SiC wafer required adaptation of the model

to accommodate a different index of refraction based on the polarization state of

the incident light. The ordinary ray refractive index was retrieved to within 0.043

and 0.067 rms error in n and κ, respectively, and the extraordinary ray index was

retrieved to within 0.066 and 0.114 rms error, respectively. Additionally, the retrieved

index was relatively consistent with the standard deviation across all pixels and never

exceeded 0.064. Both the object and downwelling temperatures were also accurately

retrieved without any a priori inputs, which is a novel contribution. Additionally,
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the ability to solve for the indices of refraction of birefringent media from passive

measurements has been demonstrated for the first time.

A third set of laboratory measurements were made of a quartz glass block, again

in reflection-mode by using a heated, wide-area blackbody to create thermal contrast.

Here, the index was retrieved to within 0.072 for the real component and 0.062 for

the imaginary component. The fit was again self-consistent as judged by the stan-

dard deviation across all pixel-wise index estimates of 0.060 and 0.057 for the real and

imaginary components, respectively. Furthermore, results from the quartz glass block

were shown to outperform the maximum smoothness temperature-emissivity separa-

tion (TES) technique. When using TES with S0 — i.e., the standard hyperspectral

image — the rms error increased to 0.147 and 0.205 in n and κ respectively. Finally,

when only a single angle was used in fitting, the retrievals were also less accurate

and much more susceptible to fitting challenges due to local minima. These local

minima represent one of the potential drawbacks of this methodology for estimat-

ing index of refraction. Utilizing both polarimetric and hyperspectral information,

as well as multiple viewing angles — which is unique to this work — significantly

improves regression performance by adding information which reduces the impact of

local minima.

Another avenue investigated in this research effort is the ability to simultaneously

estimate index of refraction and the angle of the surface normal with respect to the

sensor. Results from the heated Pyrex beaker show that the surface normal can

be obtained to within about 1 degree error when factors like temperature drift are

properly accounted for. Furthermore, including surface normal angle in the fit did

not significantly degrade the accuracy of the retrieved index. Similar analysis using

the quartz block data was consistent with these findings: surface normal angle was

retrieved to within about 1 degree error while maintaining accuracy in the index of
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refraction retrieval. Furthermore, the quartz dataset showed that the retrieval is very

consistent pixel-to-pixel with greater than 50% of the retrieved angles lying within

0.25 degrees of the median retrieval for all viewing angles.

To test this index of refraction retrieval method under operationally relevant at-

mospheric downwelling radiation, a number of measurements of a target board con-

taining several materials were made outdoors under daytime clear sky conditions.

Complications, potentially due to contamination made SiC data collected outdoors

difficult to analyze. Adding adjacency effects and multiple oscillators to the model,

however, allowed the S0 and P spectra to be reasonably described by the fit. The

index of refraction of a fused silica was was retrieved to with 0.155 rms error in n and

0.117 error in κ. Spectral resolution did not seem to have any significant effect on the

retieval as expected based on the synthetic dataset discussed earlier. Again, these re-

sults were shown to compare favorably to the maximum smoothness TES algorithm.

Finally, a sapphire window was examined and the index was again retrieved quite

accurately with rms error of less than 0.04 for both n and κ of both the o- and e-ray

indices. Furthermore, this fit was very consistent with the rms standard deviation

across all pixels never exceeding 0.012.

While the data and analysis presented here is promising, it is important to realize

that this work is an initial step in developing a methodology to robustly estimate the

refractive index of materials using passive, polarimetrically-resolved hyperspectral

data. The present effort benefitted by analyzing optically smooth dielectric mate-

rials which filled hundreds of pixels and exhibiting strong spectral variations in n

and κ across the instrument’s measurement band. There are still several challenges

and complications, some of which are discussed in the next section, that need to be

addressed before this type of instrumentation and technique can be fielded against

realistic targets in an operational setting.
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6.1 Future Work

At various points in this document, the limitations of division-of-time polarimeters

were discussed — chief among them being the potential effects of scene drift. There

are two other types of commonly used polarimeters: division of aperture and division

of focal plane. Division-of-aperture polarimeters split the incoming light into multiple

beams and measure a different polarization state for each of the beams. This has

the advantage of simultaneously collecting all polarization states while maintaining

spatial resolution but at the cost of SNR. Division-of-focal-plane polarimeters limit

the spatial resolution but simultaneously collect the polarization states and don’t

require dividing the incoming light, so SNR is maintained. While a division-of-time

polarimeter was used to collect data for this work, nothing in the index of refraction

fit is explicitly dependent on the Stokes vector being measured by a specific type of

polarimeter. For fielded sensors, division of aperture or division of focal plane would

probably outperform division of time polarimeters. It would be interesting to test

this fitting routine of data collected by other types of polarimeters to test any effects

this has on the fit as well as to collect some datasets which are more realistic to actual

applications.

One of the chief drawbacks of this method as it is currently implemented is the

amount of time it takes to fit index of refraction for a single pixel — usually on

the order of 10s of seconds. This makes it impractical to apply to an entire image.

One way to improve this is to incorporate GPU processing because the fitting rou-

tine is highly parallelizable. For much of this work, MATLAB’s parallel processing

toolbox was used to run the fit independently on each of the computers four cores.

This offered almost exactly a 4x improvement in the number of pixels fit in a given

t’ime period. GPUs have hundreds of cores, the only limitiation being limited RAM,

but since this fit is not RAM intensive, the processing speed could be significantly
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improved using GPUs. Additionally, implementing the code in C to avoid the MAT-

LAB overhead could significantly improve fit speed. Even with these improvements

however — because of the non-linear relationship between index of refraction and

radiance — the fit will likely never be as fast as classification techniques that can

be implemented with linear algebra. It would also be important to consider better

ways to search the parameter space; a number of techniques were tested as part of

this research — only a handful of which are discussed — but perhaps someone with

a better mathematics background could find ways to improve the search algorithms

and tailor them for this application. Another interesting development in recent years

has been the proliferation of neural network applications in remote sensing. It may

be interesting to try using neural networks to match index of refraction spectra to

radiance measurements. Finally, further work could be done to improve the models

used to describe index of refraction. One specific idea I had but did not implement

was treating both the magnitude and the spectral location of the ”knot” points used

in the PCHIP model as fit parameters. Another addition would be to add out-of-band

knot points a fit parameters instead of the simple linear extrapolation used for this

work. It would also be good — though likely very difficult — to have a single model

capable of describing the index of refraction of all materials.

Another limitation of this work is that it only dealt with smooth surfaces. Many of

the targets of interest for remote sensing applications won’t have smooth surfaces that

are well described by a simple Fresnel reflectance model. It would also be interesting

to consider the effects that surface roughness would have and how to best account

for them. Implementing a pBRDF to describe the material reflectance from rough

surfaces could allow the index of refraction to be fit. There are a number of compli-

cations with this that would need to be studied. The biggest difficulty with studying

this is the lack of reliable truth measurements. Index of refraction is generally treated
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as a fit parameter in BRDF models but it is not always clear whether this is actually

representative of the material being examined or just a value that produces the best

fit. Additionally, because strong sources are usually needed to measure off-specular

reflection, lasers are used to measure BRDFs limiting most measurements to a single

wavelength. Finally, to the author’s knowledge, there is no single BRDF model that

can describe a wide range of materials, so any study of BRDF effects may have to be

limited to a specific category of materials — painted targets for example.

Along these same lines, it would be beneficial to apply this fitting to more realistic

scenarios. Currently, searching for targets in a scene would be very time consuming,

but perhaps with some of the improvements discussed above it would be feasible. This

would allow a more ”apples-to-apples” comparison with existing material identifica-

tion techniques. It would also be interesting to see how potentially having estimates

of scene geometry could improve classfication accuracy. Ways of accounting for sub-

pixel targets would also have to be developed which may not be trivial due to the

non-linear relationship between radiance and index of refraction. Finally, the fit needs

to be applied to and potentially adapted for data from a wider range of more realistic

materials. The materials used in this work were chosen primary because they have

strong features in the LWIR and were easy to get truth measurements of index of

refraction for, but it would also be interesting to consider materials with more subtle

spectral features.
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Appendix A. Index of Refraction Fit - Indoor

function [n,kappa ,Tr ,Te ,Parameters ,fval ,exitflag ,output] =

nkFit4(theta ,tot_pol ,S0 ,X,varargin)

% [n,kappa ,Tr ,Te] = nkFit4(theta ,tot_pol ,X,varargin)

%

% Fit real and imaginary components of index of refraction

based on the Lorentz oscillator model and assuming

blackbody radiance incident on the surface.

%

% --- Parameters --- {} denotes default value

% Model - oscillator model

% 'LOM ' - Lorentz oscillator model

% 'PCI ' - pchip interpolation

% 'BIR ' - birefringence model

% nOsc - number of oscillators to include in fit {1 if

LOM , 15 if PCI}

% Algorithm - type of algorithm to use for fitting

% 'fmsb ' - fminsearchbnd

% 'q-n' - quasi -newton

% 'hybrid ' - 200 iterations of fmsb then q-n

% Tr - temperature of downwelling blackbody {300}

% Te - surface temperature {300}

% dT - +/- range of temperatures to allow in fitting

{50}

% emis - emissivity of downwelling blackbody {1}

% S0_only - only use S0 values in fitting {false}

% pol_only - only use tot_pol values in fitting {false}

%

% ---------------------------------

% Jacob A. Martin

% Air Force Institute of Technology

% Wright -Patterson AFB , Ohio

% (517) 507 -1013

% jacob.martin@afit.edu

% Version 0.16 -- 07-Jul -2016

% ---------------------------------

% V 0.01 11-Jun -2014 Initial version.

% V 0.02 18-Jun -2014 Updated to vectorize oscillator

parameters.

% V 0.03 28-Jun -2014 Updated to account for arbitrary

number of oscillators
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% V 0.04 30-Jun -2014 Updated to account for multiple

angles

% V 0.05 14-Jul -2014 Added option for hybrid Lorentz -

Gaussian oscillator model

% V 0.06 18-Jul -2014 Include S0 in error function

% V 0.07 21-Jul -2014 Added e_inf term to Lorentz

oscillator model

% V 0.08 12-Nov -2014 Added option to include S2 in error

function

% V 0.09 17-Nov -2014 Added option to only use S0 or

tot_pol

% V 0.10 31-Mar -2015 Added Tauc -Lorentz fitting function

% V 0.11 05-Apr -2015 Added "New Amorphous Dispersion

Formula" function

% V 0.12 17-Apr -2015 Added option to weight error function

by noise in S0 and tot_pol

% V 0.13 26-Jun -2015 Automate oscillator locations and

number of oscillators based on turning points in the

data. Number of oscillators can still be input manually

if desired.

% V 0.14 21-Sep -2015 Automatically choose between Lorentz

oscillator model and PCHIP interpolation based on

sharpness of tot_pol features. Improved temperature

bound estimates

% V 0.15 06-Jun -2016 Add birefringence fitting option

% V 0.16 07-Jul -2016 Clean up code and comment

nAng = numel(theta);

nSpc = numel(X);

% Load in optional inputs

opts = struct('nOsc',[],'Algorithm ',[],'Model ',[],'Tr',[],
'Te',[], 'dT',[],'emis',1,'S0_only ',0,'pol_only ' ,0);

opts = parse_pv_pairs(opts ,varargin);

nOsc = opts.nOsc;

emis = opts.emis;

dT = opts.dT;

S0_only = opts.S0_only;

pol_only = opts.pol_only;

% Ensure X is a row vector

[nRow ,nCol] = size(X);
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if nRow > nCol;

X = X';
end

% Ensure tot_pol is shaped [nAng ,nSpc]

[nRow ,~] = size(tot_pol);

if nRow ~= numel(theta);

tot_pol = tot_pol ';
end

tot_pol = double(tot_pol);

% Ensure S0 is shaped [nAng ,nSpc]

[nRow ,~] = size(S0);

if nRow ~= numel(theta);

S0 = S0 ';
end

S0 = double(S0);

% Ensure theta and phi are column vectors

[nRow ,nCol] = size(theta);

if nRow < nCol;

theta = theta ';
end

% If the model is unspecified , test how sharp the tot_pol

features are. If

% they are above a threshold , use the Lorentz oscillator

model , if not use

% PCHIP interpolation model

if isempty(opts.Model);

if prctile(abs(diff(tot_pol ,[] ,2) / (X(2) - X(1))) ,95)

> 0.1;

opts.Model = 'LOM';
else opts.Model = 'PCI';
end

end

% Default search methods for each model

if isempty(opts.Algorithm) && strcmp(opts.Model ,'PCI');
opts.Algorithm = 'q-n'; end

if isempty(opts.Algorithm) && strcmp(opts.Model ,'LOM');
opts.Algorithm = 'fmsb'; end
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if isempty(opts.Algorithm) && strcmp(opts.Model ,'BIR');
opts.Algorithm = 'fmsb'; end

% Calculate temperature limits based on S0 and S1

if isempty(opts.Tr) && isempty(opts.Te) && isempty(opts.dT

);

if mean(mean(mean(tot_pol))) > 0;

Te_upper = prctile(min(brightnessTemperature(X,S0

/1e6) ,[],1) ,5);

Te_lower = Te_upper - 25;

opts.Te = mean([ Te_upper Te_lower ]);

Tr_lower = prctile(max(brightnessTemperature(X,S0

/1e6) ,[],1) ,95);

% opts.Tr = mean(mean(brightnessTemperature(X,1e

-6*(2* S0) - ...

% repmat(planckian(X,opts.Te),nAng ,1))));

opts.Tr = Tr_lower + 25;

% dT = opts.Tr - Tr_lower;

% Tr_upper = opts.Tr + 5 * dT;

Tr_upper = Tr_lower + 50;

elseif mean(mean(mean(tot_pol))) < 0;

Te_lower = prctile(max(brightnessTemperature(X,S0

/1e6) ,[],1) ,95);

Te_upper = Te_lower + 25;

opts.Te = mean([ Te_upper Te_lower ]);

Tr_upper = prctile(min(brightnessTemperature(X,S0

/1e6) ,[],1) ,5);

opts.Tr = mean(mean(brightnessTemperature(X,1e

-6*(2* S0) - ...

repmat(planckian(X,opts.Te),nAng ,1))));

dT = Tr_upper - opts.Tr;

Tr_lower = opts.Tr - 5 * dT;

end

elseif isempty(opts.Tr) && isempty(opts.Te)

if mean(mean(mean(tot_pol))) > 0;

Te_upper = prctile(min(brightnessTemperature(X,S0

/1e6) ,[],1) ,20);

Te_lower = Te_upper - opts.dT;

opts.Te = mean([ Te_upper Te_lower ]);

Tr_lower = prctile(max(brightnessTemperature(X,S0

/1e6) ,[],1) ,80);

Tr_upper = Tr_lower + opts.dT;

opts.Tr = mean([ Tr_upper Tr_lower ]);
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elseif mean(mean(mean(tot_pol))) < 0;

Te_lower = prctile(max(brightnessTemperature(X,S0

/1e6) ,[],1) ,80);

Te_upper = Te_lower + opts.dT;

opts.Te = mean([ Te_upper Te_lower ]);

Tr_upper = prctile(min(brightnessTemperature(X,S0

/1e6) ,[],1) ,20);

Tr_lower = Tr_upper - opts.dT;

opts.Tr = mean([ Tr_upper Tr_lower ]);

end

else Te_upper = opts.Te + opts.dT; Te_lower = opts.Te -

opts.dT;

Tr_upper = opts.Tr + opts.dT; Tr_lower = opts.Tr -

opts.dT;

end

% If the number of oscillators is not specified , the

number of peaks in tot_pol

% (with a minimum prominence of 0.1 - well above the noise

) is used as

% the number of oscillators. If the number of oscillators

is specified , the

% oscillator locations are set to be equally spaced

between 700 and 1350

% wavenumbers. Otherwise , If using PCI model nOsc is

% always 15.

if isempty(nOsc) && strcmp(opts.Model ,'PCI'); nOsc = 15;

end

if isempty(nOsc)

[pks ,loc] = findpeaks(abs(mean(tot_pol ,1)),X,'
MinPeakProminence ' ,0.1);

nOsc = numel(pks);

Osc_loc = loc -[200 190];

elseif nOsc == 1; [~,tmp] = max(abs(mean(tot_pol ,1)));

Osc_loc = X(tmp) - 200;

else Osc_loc = linspace (700 ,800 , nOsc);

end

% Define a function for S0 , total polarization in terms of

different models. The
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% error function is defined as the Frobinius norm of the

difference

% between the S0 , tot_pol data and the function values for

these terms

% at a given point in the parameter space. By default , S0

and total

% polarization are used in the error metric , but options

also exist to use

% only S0 or only polarization.

switch opts.Model

case 'LOM'
% Lorentz oscillator model for dielectric constant

e1 = @ (vp ,v0 ,Xi ,f,einf ,v) einf + sum(repmat(f,1,

nSpc) .* ...

(repmat(vp ,nOsc ,nSpc).^2 .* (repmat(v0 ,1,nSpc)

.^2 - ...

repmat(v,nOsc ,1) .^2)) ./ (( repmat(v0 ,1,nSpc)

.^2 - ...

repmat(v,nOsc ,1) .^2) .^2 + repmat(Xi ,1,nSpc).^2

.* repmat(v,nOsc ,1) .^2) ,1);

e2 = @ (vp ,v0 ,Xi ,f,v) sum(repmat(f,1,nSpc) .* (

repmat(vp ,nOsc ,nSpc).^2 .* ...

repmat(Xi ,1,nSpc) .* repmat(v,nOsc ,1)) ./ ((

repmat(v0 ,1,nSpc).^2 - ...

repmat(v,nOsc ,1) .^2) .^2 + repmat(Xi ,1,nSpc).^2

.* repmat(v,nOsc ,1) .^2) ,1);

% Index of refraction

N = @ (vp ,v0 ,Xi ,f,einf ,v) repmat ((1/ sqrt (2)) .*

sqrt(e1(vp ,v0 ,Xi ,f,einf ,v) + ...

sqrt(e1(vp ,v0 ,Xi ,f,einf ,v).^2 + e2(vp ,v0 ,Xi ,f,

v).^2)),nAng ,1) + ...

1i * repmat ((1/ sqrt (2)) .* sqrt(-e1(vp ,v0 ,Xi ,f

,einf ,v) + ...

sqrt(e1(vp ,v0 ,Xi ,f,einf ,v).^2 + e2(vp ,v0 ,Xi ,f,

v).^2)),nAng ,1);

% Fresnel

cos_t = @ (vp ,v0 ,Xi ,f,einf ,v,Theta) sqrt(1 -

bsxfun (@times ,sin(Theta), ...

1 ./ N(vp ,v0 ,Xi ,f,einf ,v)).^2);
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R_s = @ (vp ,v0 ,Xi ,f,einf ,v,Theta) abs(bsxfun (@

minus ,cos(Theta), ...

bsxfun (@times ,N(vp ,v0 ,Xi ,f,einf ,v),cos_t(vp ,v0

,Xi ,f,einf ,v,Theta))) ./ bsxfun (@plus ,cos(

Theta), ...

bsxfun (@times ,N(vp ,v0 ,Xi ,f,einf ,v),cos_t(vp ,v0

,Xi ,f,einf ,v,Theta)))).^2;

R_p = @ (vp ,v0 ,Xi ,f,einf ,v,Theta) abs(( cos_t(vp ,v0

,Xi ,f,einf ,v,Theta) - ...

bsxfun (@times ,N(vp ,v0 ,Xi ,f,einf ,v),cos(Theta))

) ./ ...

(cos_t(vp ,v0 ,Xi ,f,einf ,v,Theta) + bsxfun (@

times ,N(vp ,v0 ,Xi ,f,einf ,v), ...

cos(Theta)))).^2;

R = @ (vp ,v0 ,Xi ,f,einf ,v,Theta) (R_s(vp ,v0 ,Xi ,f,

einf ,v,Theta) + R_p(vp ,v0 ,Xi ,f,einf ,v,Theta)) /

2;

% Theoretical S0

S0_calc = @(vp ,v0 ,Xi ,f,einf ,Tr ,Te ,v) R(vp ,v0 ,Xi ,f,

einf ,v,theta) .* ...

repmat(emis*planckian(v,Tr),nAng ,1) * 1e6 + (1

- R(vp ,v0 ,Xi ,f,einf ,v,theta)) .* ...

repmat(planckian(v,Te),nAng ,1) * 1e6;

% Theoretical total polarization

tot_pol_calc = @(vp ,v0 ,Xi ,f,einf ,Tr ,Te ,v) (R_s(vp ,

v0 ,Xi ,f,einf ,v,theta) - R_p(vp ,v0 ,Xi ,f,einf ,v,

theta)) ...

.* repmat ((emis*planckian(v,Tr) - planckian(v,

Te)),nAng ,1) * 0.5e6;

% Define error function

if S0_only

error = @(x) norm(S0 -S0_calc(x(3* nOsc +1),x(1:

nOsc),x(nOsc +1:2* nOsc),x(2* nOsc +1:3* nOsc),

...

x(3* nOsc +2),x(3* nOsc +3),x(3* nOsc +4),X),'
fro');

elseif pol_only
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error = @(x) norm(tot_pol -tot_pol_calc(x(3*

nOsc +1),x(1: nOsc),x(nOsc +1:2* nOsc),x(2* nOsc

+1:3* nOsc),...

x(3* nOsc +2),x(3* nOsc +3),x(3* nOsc +4),X),'
fro');

else

error = @(x) norm(tot_pol -tot_pol_calc(x(3*

nOsc +1),x(1: nOsc),x(nOsc +1:2* nOsc),x(2* nOsc

+1:3* nOsc),...

x(3* nOsc +2),x(3* nOsc +3),x(3* nOsc +4),X),'
fro') + ...

norm(S0 -S0_calc(x(3* nOsc +1),x(1: nOsc),x(

nOsc +1:2* nOsc),x(2* nOsc +1:3* nOsc),...

x(3* nOsc +2),x(3* nOsc +3),x(3* nOsc +4),X),'
fro');

end

% Initial guess for algorithm and bounds

% x = [v0 ; Xi ; f ; vp ; einf ; Tr ; Te]

% If nOsc = 1, f can be forced to one

if nOsc == 1;

x_init = [Osc_loc ' ; 10* ones(nOsc ,1)

; ones(nOsc ,1) ; 1250 ; 5 ; opts.Tr ;

opts.Te];

x_lower = [600* ones(nOsc ,1) ; zeros(nOsc ,1)

; ones(nOsc ,1) ; 0 ; 0 ;

Tr_lower ; Te_lower ];

x_upper = [1250* ones(nOsc ,1) ; 30* ones(nOsc ,1)

; ones(nOsc ,1) ; 20000; 10; Tr_upper

; Te_upper ];

else

x_init = [1000* ones(nOsc ,1) ; ones(nOsc ,1) ;

0.5* ones(nOsc ,1) ; 1400 ; 6.7 ; opts.Tr

; opts.Te];

x_lower = [600* ones(nOsc ,1) ; zeros(nOsc ,1) ;

zeros(nOsc ,1) ; 1000 ; 0 ; Tr_lower ;

Te_lower ];

x_upper = [1500* ones(nOsc ,1) ; 30 * ones(nOsc

,1) ; ones(nOsc ,1) ; 2000; 10; Tr_upper ;

Te_upper ];

end

case 'PCI'
% Knot point spacing

150



www.manaraa.com

tmp = linspace(X(1),X(end),nOsc);

del_xx = tmp (2)-tmp (1);

% Number of out -of -band extrapolation points

nOut = 5;

% Knot point locations

xx = [linspace(X(1)-nOut*del_xx ,X(1)-del_xx ,nOut)

...

linspace(X(1),X(end),nOsc) linspace(X(end)+

del_xx ,X(end)+nOut*del_xx ,nOut)];

% Kappa at each knot point and extrapolate out of

band

K_tmp = @(yy) max(interp1(tmp ,yy ,xx ,'linear ','
extrap ') ,0);

% Apply the hilbert transform to kappa to solve

for n

N_tmp = @(yy ,a) -imag(hilbert(K_tmp(yy))) + a;

% Interpolate n and kappa back onto instrument

spectral axis

K = @(yy) interp1(tmp ,max(yy ,0),X,'pchip ');
N_tmp = @(yy ,a) interp1(xx ,N_tmp(yy ,a),X,'pchip ');

% Index of refraction

N = @(yy ,a) N_tmp(yy ,a) + 1i * K(yy);

% Fresnel

cos_t = @ (yy ,a,Theta) sqrt(1 - bsxfun (@times ,sin(

Theta), ...

1 ./ N(yy ,a)).^2);

R_s = @ (yy ,a,Theta) abs(bsxfun (@minus ,cos(Theta),

...

bsxfun (@times ,N(yy ,a),cos_t(yy ,a,Theta))) ./

bsxfun (@plus ,cos(Theta), ...

bsxfun (@times ,N(yy ,a),cos_t(yy ,a,Theta)))).^2;

R_p = @ (yy ,a,Theta) abs(( cos_t(yy ,a,Theta) - ...

repmat(N(yy ,a),nAng ,1) .* repmat(cos(Theta) ,1,

nSpc)) ./ ...
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(cos_t(yy ,a,Theta) + repmat(N(yy ,a),nAng ,1) .*

...

repmat(cos(Theta) ,1,nSpc))).^2;

R = @ (yy ,a,Theta) (R_s(yy ,a,Theta) + R_p(yy ,a,

Theta)) / 2;

% Theoretical S0

S0_calc = @ (yy ,a,Tr ,Te ,v) R(yy ,a,theta) .* ...

repmat(emis*planckian(v,Tr),nAng ,1) * 1e6 + (1

- R(yy ,a,theta)) .* ...

repmat(planckian(v,Te),nAng ,1) * 1e6;

% Theoretical tot_pol

tot_pol_calc = @ (yy ,a,Tr ,Te ,v) (R_s(yy ,a,theta) -

...

R_p(yy ,a,theta)) .* repmat ((emis*planckian(v,

Tr) - ...

planckian(v,Te)),nAng ,1) * 0.5e6;

if dT == 0;

% Define error function

if S0_only

error = @(x) norm(S0 -S0_calc(x(1: nOsc),x(

nOsc +1),opts.Tr ,opts.Te ,X),'fro');
elseif pol_only

error = @(x) norm(tot_pol -tot_pol_calc(x

(1: nOsc),x(nOsc +1),opts.Tr ,opts.Te ,X),'
fro');

else

error = @(x) norm(tot_pol -tot_pol_calc(x

(1: nOsc),x(nOsc +1),opts.Tr ,opts.Te ,X),'
fro') + ...

norm(S0 -S0_calc(x(1: nOsc),x(nOsc +1),

opts.Tr ,opts.Te ,X),'fro');
end

% Initial guess for algorithm and bounds

% x = [yy ; a ; Tr ; Te]

x_init = [ones(nOsc ,1) ; 1.4639];

x_lower = [zeros(nOsc ,1) ; 1];

x_upper = [10* ones(nOsc ,1) ; 1.5];

else
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% Define error function

if S0_only

error = @(x) norm(S0 -S0_calc(x(1: nOsc),x(

nOsc +1),x(nOsc +2),x(nOsc +3),X),'fro');
elseif pol_only

error = @(x) norm(tot_pol -tot_pol_calc(x

(1: nOsc),x(nOsc +1),x(nOsc +2),x(nOsc +3),

X),'fro');
else

error = @(x) norm(tot_pol -tot_pol_calc(x

(1: nOsc),x(nOsc +1),x(nOsc +2),x(nOsc +3),

X),'fro') + ...

norm(S0 -S0_calc(x(1: nOsc),x(nOsc +1),x(

nOsc +2),x(nOsc +3),X),'fro');
end

% Initial guess for algorithm and bounds

% x = [yy ; a ; Tr ; Te]

x_init = [ones(nOsc ,1) ; 1.4639 ; opts.Tr

; opts.Te];

x_lower = [zeros(nOsc ,1) ; 1 ; Tr_lower ;

Te_lower ];

x_upper = [10* ones(nOsc ,1) ; 1.5 ; Tr_upper ;

Te_upper ];

end

case 'BIR'
% Lorentz oscillator model for dielectric constant

e1 = @ (vp ,v0 ,Xi ,f,einf ,v) einf + sum(repmat(f,1,

nSpc) .* ...

(repmat(vp ,nOsc ,nSpc).^2 .* (repmat(v0 ,1,nSpc)

.^2 - ...

repmat(v,nOsc ,1) .^2)) ./ (( repmat(v0 ,1,nSpc)

.^2 - ...

repmat(v,nOsc ,1) .^2) .^2 + repmat(Xi ,1,nSpc).^2

.* repmat(v,nOsc ,1) .^2) ,1);

e2 = @ (vp ,v0 ,Xi ,f,v) sum(repmat(f,1,nSpc) .* (

repmat(vp ,nOsc ,nSpc).^2 .* ...

repmat(Xi ,1,nSpc) .* repmat(v,nOsc ,1)) ./ ((

repmat(v0 ,1,nSpc).^2 - ...

repmat(v,nOsc ,1) .^2) .^2 + repmat(Xi ,1,nSpc).^2

.* repmat(v,nOsc ,1) .^2) ,1);
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% Index of refraction

N = @ (vp ,v0 ,Xi ,f,einf ,v) repmat ((1/ sqrt (2)) .*

sqrt(e1(vp ,v0 ,Xi ,f,einf ,v) + ...

sqrt(e1(vp ,v0 ,Xi ,f,einf ,v).^2 + e2(vp ,v0 ,Xi ,f,

v).^2)),nAng ,1) + ...

1i * repmat ((1/ sqrt (2)) .* sqrt(-e1(vp ,v0 ,Xi ,f

,einf ,v) + ...

sqrt(e1(vp ,v0 ,Xi ,f,einf ,v).^2 + e2(vp ,v0 ,Xi ,f,

v).^2)),nAng ,1);

% Fresnel

cos_t = @ (vp ,v0 ,Xi ,f,einf ,v,Theta) sqrt(1 -

bsxfun (@times ,sin(Theta), ...

1 ./ N(vp ,v0 ,Xi ,f,einf ,v)).^2);

R_s = @ (vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,v,Theta) abs(

bsxfun (@minus ,cos(Theta), ...

bsxfun (@times ,N(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,v),

cos_t(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,v,Theta)))

./ bsxfun (@plus ,cos(Theta), ...

bsxfun (@times ,N(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,v),

cos_t(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,v,Theta))))

.^2;

R_p = @ (vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v,Theta) abs((

cos_t(vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v,Theta) - ...

bsxfun (@times ,N(vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v),

cos(Theta))) ./ ...

(cos_t(vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v,Theta) +

bsxfun (@times ,N(vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v

), ...

cos(Theta)))).^2;

R = @ (vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,vp_p ,v0_p ,Xi_p ,

f_p ,einf_p ,v,Theta) (R_s(vp_s ,v0_s ,Xi_s ,f_s ,

einf_s ,v,Theta) + ...

R_p(vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v,Theta)) / 2;

% Theoretical S0

S0_calc = @(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,vp_p ,v0_p ,

Xi_p ,f_p ,einf_p ,Tr ,Te ,v) ...

R(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,vp_p ,v0_p ,Xi_p ,f_p

,einf_p ,v,theta) .* ...
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repmat(emis*planckian(v,Tr),nAng ,1) * 1e6 + ...

(1 - R(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,vp_p ,v0_p ,

Xi_p ,f_p ,einf_p ,v,theta)) .* repmat(

planckian(v,Te),nAng ,1) * 1e6;

% Theoretical total polarization

tot_pol_calc = @(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,vp_p ,

v0_p ,Xi_p ,f_p ,einf_p ,Tr ,Te ,v) ...

(R_s(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,v,theta) - R_p(

vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v,theta)) ...

.* (repmat(emis*planckian(v,Tr),nAng ,1) * 0.5

e6 - ...

repmat(planckian(v,Te),nAng ,1) * 0.5e6);

% Define error function

if S0_only

error = @(x) norm(S0 -S0_calc(x(3* nOsc +1),x(1:

nOsc),x(nOsc +1:2* nOsc),x(2* nOsc +1:3* nOsc),x

(3* nOsc +2),x(6* nOsc +3),x(3* nOsc +3:4* nOsc +2)

,x(4* nOsc +3:5* nOsc +2),...

x(5* nOsc +3:6* nOsc +2),x(6* nOsc +4),x(6* nOsc

+5),x(6* nOsc +6),X),'fro');
elseif pol_only

error = @(x) norm(tot_pol -tot_pol_calc(x(4),x

(1),x(2),x(3),x(5),x(9),x(6),x(7),...

x(8),x(10),x(11),x(12),X),'fro');
else

error = @(x) norm(tot_pol -tot_pol_calc(x(3*

nOsc +1),x(1: nOsc),x(nOsc +1:2* nOsc),x(2* nOsc

+1:3* nOsc),x(3* nOsc +2),x(6* nOsc +3),x(3* nOsc

+3:4* nOsc +2),x(4* nOsc +3:5* nOsc +2),...

x(5* nOsc +3:6* nOsc +2),x(6* nOsc +4),x(6* nOsc

+5),x(6* nOsc +6),X),'fro') + ...

norm(S0 -S0_calc(x(3* nOsc +1),x(1: nOsc),x(

nOsc +1:2* nOsc),x(2* nOsc +1:3* nOsc),x(3*

nOsc +2),x(6* nOsc +3),x(3* nOsc +3:4* nOsc

+2),x(4* nOsc +3:5* nOsc +2),...

x(5* nOsc +3:6* nOsc +2),x(6* nOsc +4),x(6* nOsc

+5),x(6* nOsc +6),X),'fro');
end

% Initial guess for algorithm and bounds
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% x = [v0_s ; Xi_s ; f_s ; vp_s ; einf_s ; v0_p ;

Xi_p ; f_p ;

% vp_p ; einf_p ; Tr ; Te]

if nOsc == 1;

x_init = [500 ; 14 ; 1 ; 1250 ; 3 ; 500 ; 18

; 1 ; 1350 ; 3 ; opts.Tr ; opts.Te];

x_lower = [300 ; 10 ; 1 ; 1000 ; 0 ; 300 ; 10

; 1 ; 1000 ; 0 ; Tr_lower ; Te_lower ];

x_upper = [800 ; 20 ; 1 ; 4000 ; 5 ; 800 ; 20

; 1 ; 4000 ; 5 ; Tr_upper ; Te_upper ];

else

x_init = [linspace (500 ,700 , nOsc)' ; 14* ones(

nOsc ,1) ; ones(nOsc ,1) ; ...

1250 ; 3 ; linspace (500 ,700 , nOsc)' ; 18*

ones(nOsc ,1) ; ones(nOsc ,1) ; ...

1350 ; 3 ; opts.Tr ; opts.Te];

x_lower = [300* ones(nOsc ,1) ; 10* ones(

nOsc ,1) ; zeros(nOsc ,1) ; ...

1000 ; 0 ; 300* ones(nOsc ,1) ; 10* ones(nOsc

,1) ; zeros(nOsc ,1) ; ...

1000 ; 0 ; Tr_lower ; Te_lower ];

x_upper = [800* ones(nOsc ,1) ; 20* ones(

nOsc ,1) ; ones(nOsc ,1) ; ...

4000 ; 5 ; 800* ones(nOsc ,1) ; 20* ones(nOsc

,1) ; ones(nOsc ,1) ; ...

4000 ; 5 ; Tr_upper ; Te_upper ];

end

end

% Implement algorithm of choice to search the parameter

space. By default

% the bounded fminsearch is used.

switch opts.Algorithm

case 'fmsb'
[x_meas ,fval ,exitflag ,output] = fminsearchbnd(

error ,x_init ,x_lower ,x_upper ,...

optimset('MaxFunEvals ',1e15 ,'MaxIter ' ,1.5e4 ,'
PlotFcns ',@optimplotfval));

case 'q-n'
fitopts = optimoptions('fminunc ','Algorithm ','

quasi -newton ',...
'MaxFunEvals ',1e15 ,'PlotFcns ',@optimplotfval);
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[x_meas ,fval ,~,~,~] = fminunc(error ,x_init ,fitopts

);

case 'hybrid '
[x_meas ,~,exitflag ,output] = fminsearchbnd(error ,

x_init ,x_lower ,x_upper ,...

optimset('MaxFunEvals ',1e15 ,'MaxIter ' ,200,'
PlotFcns ',@optimplotfval));

fitopts = optimoptions('fminunc ','Algorithm ','
quasi -newton ',...
'MaxFunEvals ',1e15 ,'PlotFcns ',@optimplotfval);

[x_meas ,fval ,~,~,~] = fminunc(error ,x_meas ,fitopts

);

end

% Parse out oscillator parameters

switch opts.Model

case 'LOM'
Parameters.vp = x_meas (3* nOsc +1);

Parameters.v0 = x_meas (1: nOsc);

Parameters.Xi = x_meas(nOsc +1:2* nOsc);

Parameters.f = x_meas (2* nOsc +1:3* nOsc);

Parameters.einf = x_meas (3* nOsc +2);

Tr = x_meas (3* nOsc +3);

Te = x_meas (3* nOsc +4);

Parameters.TrLim = [Tr_lower Tr_upper ];

Parameters.TeLim = [Te_lower Te_upper ];

% Predicted n and kappa

n = real(mean(N(Parameters.vp ,Parameters.v0 ,

Parameters.Xi ,Parameters.f,Parameters.einf ,X)

,1));

kappa = imag(mean(N(Parameters.vp ,Parameters.v0 ,

Parameters.Xi ,Parameters.f,Parameters.einf ,X)

,1));

case 'PCI'
if dT == 0;

Parameters.yy = x_meas (1: nOsc);

Parameters.a = x_meas(nOsc +1);

Tr = opts.Tr;

Te = opts.Te;

else

Parameters.yy = x_meas (1: nOsc);
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Parameters.a = x_meas(nOsc +1);

Tr = x_meas(nOsc +2);

Te = x_meas(nOsc +3);

Parameters.TrLim = [Tr_lower Tr_upper ];

Parameters.TeLim = [Te_lower Te_upper ];

end

% Predicted n and kappa

n = mean(real(N(Parameters.yy ,Parameters.a))

,1);

kappa = mean(K(Parameters.yy) ,1);

case 'BIR'
Parameters.v0_s = x_meas (1: nOsc);

Parameters.Xi_s = x_meas(nOsc +1:2* nOsc);

Parameters.f_s = x_meas (2* nOsc +1:3* nOsc);

Parameters.vp_s = x_meas (3* nOsc +1);

Parameters.einf_s = x_meas (3* nOsc +2);

Parameters.v0_p = x_meas (3* nOsc +3:4* nOsc +2);

Parameters.Xi_p = x_meas (4* nOsc +3:5* nOsc +2);

Parameters.f_p = x_meas (5* nOsc +3:6* nOsc +2);

Parameters.vp_p = x_meas (6* nOsc +3);

Parameters.einf_p = x_meas (6* nOsc +4);

Tr = x_meas (6* nOsc +5);

Te = x_meas (6* nOsc +6);

% Predicted n and kappa for each polarization

state

Parameters.n_1 = real(mean(N(Parameters.vp_s ,

Parameters.v0_s ,Parameters.Xi_s ,Parameters.f_s ,

Parameters.einf_s ,X) ,1));

Parameters.n_2 = real(mean(N(Parameters.vp_p ,

Parameters.v0_p ,Parameters.Xi_p ,Parameters.f_p ,

Parameters.einf_p ,X) ,1));

Parameters.k_1 = imag(mean(N(Parameters.vp_s ,

Parameters.v0_s ,Parameters.Xi_s ,Parameters.f_s ,

Parameters.einf_s ,X) ,1));

Parameters.k_2 = imag(mean(N(Parameters.vp_p ,

Parameters.v0_p ,Parameters.Xi_p ,Parameters.f_p ,

Parameters.einf_p ,X) ,1));

% Predicted n and kappa

n = (Parameters.n_1 + Parameters.n_2) / 2;
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kappa = (Parameters.k_1 + Parameters.k_2) / 2;

end

disp(['Objective Function Value = ' num2str(fval)]);

159



www.manaraa.com

Appendix B. Index of Refraction Fit - Outdoor

function [n,kappa ,Ld ,Te ,Parameters ,fval ,exitflag ,output] =

nkFit5(theta ,tot_pol ,S0 ,X,varargin)

% [n,kappa ,Ld ,Te] = nkFit5(theta ,tot_pol ,X,varargin)

%

% Fit real and imaginary components of index of refraction

as well as object temperature and atmospheric

downwelling radiance.

%

% --- Parameters --- {} denotes default value

% Model - oscillator model

% 'LOM ' - Lorentz oscillator model (default)

% 'PCI ' - pchip interpolation

% 'BIR ' - birefringence model

% nOsc - number of oscillators to include in fit {1 if

LOM , 15 if PCI}

% Algorithm - type of algorithm to use for fitting

% 'fmsb ' - fminsearchbnd (default)

% 'q-n' - quasi -newton

% 'hybrid ' - 200 iterations of fmsb then q-n

% Te - surface temperature {300}

% dT - +/- range of temperatures to allow in fitting

{[]}

% S0_only - only use S0 values in fitting {false}

% pol_only - only use tot_pol values in fitting {false}

% atm_path - file path of atmospheres to load ('/Users/
martinja/Desktop/Atmospheres ')

% Ld - fixed downwelling radiance {[]}

% adj - adjacency effects {false}

%

% ---------------------------------

% Jacob A. Martin

% Air Force Institute of Technology

% Wright -Patterson AFB , Ohio

% (517) 507 -1013

% jacob.martin@afit.edu

% Version 0.04 -- 07-Jul -2016

% ---------------------------------

% V 0.01 22-Feb -2016 Initial version (modified from nkFit4

.m)
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% V 0.02 01-Mar -2016 Added option to manually input

downwelling

% V 0.03 20-Jun -2016 Added option for adjacency effect

% V 0.04 07-Jul -2016 Code cleanup and comment

nAng = numel(theta);

nSpc = numel(X);

% Load in optional inputs

opts = struct('nOsc',[],'Algorithm ',[],'Model ','LOM','Te'
,[],'dT',[],'Ld',[], 'S0_only ',0,'pol_only ',0,'atm_path
','/Users/martinja/Desktop/Atmospheres/','adj' ,0);

opts = parse_pv_pairs(opts ,varargin);

nOsc = opts.nOsc;

dT = opts.dT;

S0_only = opts.S0_only;

pol_only = opts.pol_only;

atm_path = opts.atm_path;

% Ensure X is a row vector

[nRow ,nCol] = size(X);

if nRow > nCol;

X = X';
end

% Ensure tot_pol is shaped [nAng ,nSpc]

[nRow ,~] = size(tot_pol);

if nRow ~= numel(theta);

tot_pol = tot_pol ';
end

tot_pol = double(tot_pol);

% Ensure S0 is shaped [nAng ,nSpc]

[nRow ,~] = size(S0);

if nRow ~= numel(theta);

S0 = S0 ';
end

S0 = double(S0);

% Ensure input Ld is shaped [nAng ,nSpc]

if ~isempty(opts.Ld);

[nRow ,~] = size(opts.Ld);
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if nRow ~= numel(theta);

opts.Ld = opts.Ld ';
end

opts.Ld = double(opts.Ld);

end

% Ensure theta is a column vector

[nRow ,nCol] = size(theta);

if nRow < nCol;

theta = theta ';
end

% Default search algorithms based on model

if isempty(opts.Algorithm) && strcmp(opts.Model ,'PCI');
opts.Algorithm = 'q-n'; end

if isempty(opts.Algorithm) && strcmp(opts.Model ,'LOM');
opts.Algorithm = 'fmsb'; end

if isempty(opts.Algorithm) && strcmp(opts.Model ,'BIR');
opts.Algorithm = 'fmsb'; end

% Set object temperature limits

if isempty(opts.Te)

Te_lower = prctile(max(brightnessTemperature(X,S0/1e6)

,[],2) ,95);

Te_upper = Te_lower + 25;

opts.Te = mean([ Te_upper Te_lower ]);

else

Te_lower = opts.Te - dT;

Te_upper = opts.Te + dT;

end

% If the number of oscillators is not specified , the

number of peaks in tot_pol

% (that are at least 50 wavenumbers separated from another

peak) is used as

% the number of oscillators. The location of these peaks

are used as the

% initial estimate of the oscillator centers. Two

additional oscillators

% are added approximately 100 wavenumbers outside the band

response of the

% Telops sensor. If the number of oscillators is specified

, the oscillator
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% locations are set to be equally spaced between 700 and

1350 wavenumbers.

if isempty(nOsc) && strcmp(opts.Model ,'PCI'); nOsc = 15;

end

if isempty(nOsc)

[pks ,loc] = findpeaks(abs(mean(tot_pol ,1)),X,'
MinPeakProminence ' ,0.1);

nOsc = numel(pks);

Osc_loc = loc -[200 190];

elseif nOsc == 1; [~,tmp] = max(abs(mean(tot_pol ,1)));

Osc_loc = X(tmp) - 200;

elseif nOsc == 2;

Osc_loc = [700 800];

else Osc_loc = linspace (700 ,1350 , nOsc);

end

% Load in atmospheres. The angle here is the angle of the

downwelling ray

% w.r.t zenith. At this point angles and spectral

resolution have to be

% manually set.

if isempty(opts.Ld);

wn = 1;

ang = [20 20 60]*pi /180;

down = zeros(numel(theta) ,20,5,20,20, numel(X));

for ii = 1: numel(theta);

tmp = load([ atm_path num2str(wn) 'wn' num2str(ang(

ii)*180/ pi) 'Deg']);
down(ii ,:,:,:,:,:) = tmp.down;

end

else down = opts.Ld;

end

% Define a function for S0 , total polarization in terms of

different models. The

% error function is also defined as the Frobinius norm of

the difference

% between the S0 , tot_pol data and the function values for

these terms

% at a given position in the parameter space. By default ,

S0 and total
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% polarization are used in the error metric , but options

also exist to use

% only S0 or only polarization.

switch opts.Model

case 'LOM'
% Lorentz oscillator model for dielectric constant

e1 = @ (vp ,v0 ,Xi ,f,einf ,v) einf + sum(repmat(f,1,

nSpc) .* ...

(repmat(vp ,nOsc ,nSpc).^2 .* (repmat(v0 ,1,nSpc)

.^2 - ...

repmat(v,nOsc ,1) .^2)) ./ (( repmat(v0 ,1,nSpc)

.^2 - ...

repmat(v,nOsc ,1) .^2) .^2 + repmat(Xi ,1,nSpc).^2

.* repmat(v,nOsc ,1) .^2) ,1);

e2 = @ (vp ,v0 ,Xi ,f,v) sum(repmat(f,1,nSpc) .* (

repmat(vp ,nOsc ,nSpc).^2 .* ...

repmat(Xi ,1,nSpc) .* repmat(v,nOsc ,1)) ./ ((

repmat(v0 ,1,nSpc).^2 - ...

repmat(v,nOsc ,1) .^2) .^2 + repmat(Xi ,1,nSpc).^2

.* repmat(v,nOsc ,1) .^2) ,1);

% Index of refraction

N = @ (vp ,v0 ,Xi ,f,einf ,v) repmat ((1/ sqrt (2)) .*

sqrt(e1(vp ,v0 ,Xi ,f,einf ,v) + ...

sqrt(e1(vp ,v0 ,Xi ,f,einf ,v).^2 + e2(vp ,v0 ,Xi ,f,

v).^2)),nAng ,1) + ...

1i * repmat ((1/ sqrt (2)) .* sqrt(-e1(vp ,v0 ,Xi ,f

,einf ,v) + ...

sqrt(e1(vp ,v0 ,Xi ,f,einf ,v).^2 + e2(vp ,v0 ,Xi ,f,

v).^2)),nAng ,1);

% Fresnel

cos_t = @ (vp ,v0 ,Xi ,f,einf ,v,Theta) sqrt(1 -

bsxfun (@times ,sin(Theta), ...

1 ./ N(vp ,v0 ,Xi ,f,einf ,v)).^2);

R_s = @ (vp ,v0 ,Xi ,f,einf ,v,Theta) abs(bsxfun (@

minus ,cos(Theta), ...

bsxfun (@times ,N(vp ,v0 ,Xi ,f,einf ,v),cos_t(vp ,v0

,Xi ,f,einf ,v,Theta))) ./ bsxfun (@plus ,cos(

Theta), ...
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bsxfun (@times ,N(vp ,v0 ,Xi ,f,einf ,v),cos_t(vp ,v0

,Xi ,f,einf ,v,Theta)))).^2;

R_p = @ (vp ,v0 ,Xi ,f,einf ,v,Theta) abs(( cos_t(vp ,v0

,Xi ,f,einf ,v,Theta) - ...

bsxfun (@times ,N(vp ,v0 ,Xi ,f,einf ,v),cos(Theta))

) ./ ...

(cos_t(vp ,v0 ,Xi ,f,einf ,v,Theta) + bsxfun (@

times ,N(vp ,v0 ,Xi ,f,einf ,v), ...

cos(Theta)))).^2;

R = @ (vp ,v0 ,Xi ,f,einf ,v,Theta) (R_s(vp ,v0 ,Xi ,f,

einf ,v,Theta) + R_p(vp ,v0 ,Xi ,f,einf ,v,Theta)) /

2;

if isempty(opts.Ld);

% Theoretical S0

S0_calc = @(v0 ,Xi ,f,vp ,einf ,Tg ,Tl ,H2O ,O3 ,Te ,v)

R(vp ,v0 ,Xi ,f,einf ,v,theta) .* ...

squeeze(down(:,round(Tg),round(Tl),round(

H2O),round(O3) ,:)) + ...

(1 - R(vp ,v0 ,Xi ,f,einf ,v,theta)) .* repmat

(planckian(v,Te),nAng ,1) * 1e6;

% Theoretical total polarization

tot_pol_calc = @(v0 ,Xi ,f,vp ,einf ,Tg ,Tl ,H2O ,O3 ,

Te ,v) (R_s(vp ,v0 ,Xi ,f,einf ,v,theta) - R_p(

vp ,v0 ,Xi ,f,einf ,v,theta)) ...

.* (0.5 .* squeeze(down(:,round(Tg),round(

Tl),round(H2O),round(O3) ,:)) - ...

repmat(planckian(v,Te),nAng ,1) * 0.5e6);

else

% Theoretical S0

S0_calc = @(v0 ,Xi ,f,vp ,einf ,Tg ,Tl ,H2O ,O3 ,Te ,v)

R(vp ,v0 ,Xi ,f,einf ,v,theta) .* ...

down + (1 - R(vp ,v0 ,Xi ,f,einf ,v,theta)) .*

repmat(planckian(v,Te),nAng ,1) * 1e6;

% Theoretical total polarization

tot_pol_calc = @(v0 ,Xi ,f,vp ,einf ,Tg ,Tl ,H2O ,O3 ,

Te ,v) (R_s(vp ,v0 ,Xi ,f,einf ,v,theta) - R_p(

vp ,v0 ,Xi ,f,einf ,v,theta)) ...
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.* (0.5 .* down - repmat(planckian(v,Te),

nAng ,1) * 0.5e6);

end

% Define error function

if S0_only

error = @(x) norm(S0 -S0_calc(x(1: nOsc),x(nOsc

+1:2* nOsc),x(2* nOsc +1:3* nOsc),...

x(3* nOsc +1),x(3* nOsc +2),x(3* nOsc +3),x(3*

nOsc +4),x(3* nOsc +5),...

x(3* nOsc +6),x(3* nOsc +7),X),'fro');
elseif pol_only

error = @(x) norm(tot_pol -tot_pol_calc(x(1:

nOsc),x(nOsc +1:2* nOsc),x(2* nOsc +1:3* nOsc),

...

x(3* nOsc +1),x(3* nOsc +2),x(3* nOsc +3),x(3*

nOsc +4),x(3* nOsc +5),...

x(3* nOsc +6),x(3* nOsc +7),X),'fro');
else

error = @(x) norm(tot_pol -tot_pol_calc(x(1:

nOsc),x(nOsc +1:2* nOsc),x(2* nOsc +1:3* nOsc),

...

x(3* nOsc +1),x(3* nOsc +2),x(3* nOsc +3),x(3*

nOsc +4),x(3* nOsc +5),...

x(3* nOsc +6),x(3* nOsc +7),X),'fro') + ...

norm(S0 -S0_calc(x(1: nOsc),x(nOsc +1:2* nOsc)

,x(2* nOsc +1:3* nOsc),...

x(3* nOsc +1),x(3* nOsc +2),x(3* nOsc +3),x(3*

nOsc +4),x(3* nOsc +5),...

x(3* nOsc +6),x(3* nOsc +7),X),'fro');
end

% Initial guess for algorithm and bounds

% x = [v0 ; Xi ; f ; vp ; einf ; Tg ; Tl ; H2O ;

O3 ; Te]

% If nOsc = 1, f can be forced to one

if nOsc == 1;

x_init = [Osc_loc ' ; 10* ones(nOsc ,1) ;

ones(nOsc ,1) ; ...

1250 ; 5 ; 10 ; 4 ; 10 ; 10 ; opts.Te];

x_lower = [Osc_loc '-200 ; zeros(nOsc ,1) ;

ones(nOsc ,1) ; ...

1000 ; 0 ; 1 ; 1 ; 1 ; 1 ; Te_lower ];
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x_upper = [Osc_loc '+200 ; 20* ones(nOsc ,1) ;

ones(nOsc ,1) ; ...

20000; 10 ; 20 ; 5 ; 20 ; 20 ; Te_upper ];

else

x_init = [Osc_loc ' ; ones(nOsc ,1) ;

0.5* ones(nOsc ,1) ; ...

1400 ; 6.7 ; 10 ; 4 ; 10 ; 10 ; opts.Te];

x_lower = [Osc_loc '-200 ; zeros(nOsc ,1) ;

zeros(nOsc ,1) ; ...

1000 ; 5 ; 1 ; 1 ; 1 ; 1 ; Te_lower ];

x_upper = [Osc_loc '+200 ; 30 * ones(nOsc ,1) ;

ones(nOsc ,1) ; ...

2000 ; 10 ; 20 ; 5 ; 20 ; 20 ; Te_upper ];

end

% Adjacency effects

if opts.adj == 1;

S0_calc = @(v0 ,Xi ,f,vp ,einf ,Te ,adj ,Tr ,v) ...

(1 - adj) .* R(vp ,v0 ,Xi ,f,einf ,v,theta) .*

down + ...

adj .* R(vp ,v0 ,Xi ,f,einf ,v,theta) .*

repmat(planckian(v,Tr),nAng ,1) * 1e6 +

...

(1 - R(vp ,v0 ,Xi ,f,einf ,v,theta)) .* repmat

(planckian(v,Te),nAng ,1) * 1e6;

tot_pol_calc = @(v0 ,Xi ,f,vp ,einf ,Te ,adj ,Tr ,v)

(R_s(vp ,v0 ,Xi ,f,einf ,v,theta) - R_p(vp ,v0 ,

Xi ,f,einf ,v,theta)) ...

.* (0.5 .* ((1-adj) .* down + adj .*

repmat(planckian(v,Tr),nAng ,1) * 1e6) -

...

repmat(planckian(v,Te),nAng ,1) * 0.5e6);

error = @(x) norm(tot_pol -tot_pol_calc(x(1:

nOsc),x(nOsc +1:2* nOsc),x(2* nOsc +1:3* nOsc),

...

x(3* nOsc +1),x(3* nOsc +2),x(3* nOsc +3),x(3*

nOsc +4),x(3* nOsc +5),X),'fro') + ...

norm(S0 -S0_calc(x(1: nOsc),x(nOsc +1:2* nOsc)

,x(2* nOsc +1:3* nOsc),...

x(3* nOsc +1),x(3* nOsc +2),x(3* nOsc +3),x(3*

nOsc +4),x(3* nOsc +5),X),'fro');
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x_init = [Osc_loc ' ; ones(nOsc ,1) ;

0.5* ones(nOsc ,1) ; ...

1400 ; 6.7 ; opts.Te ; 0.5 ; 300];

x_lower = [Osc_loc '-200 ; zeros(nOsc ,1) ;

zeros(nOsc ,1) ; ...

1000 ; 5 ; Te_lower; 0 ; 250];

x_upper = [Osc_loc '+200 ; 30 * ones(nOsc ,1) ;

ones(nOsc ,1) ; ...

2000 ; 10 ; Te_upper; 1 ; 300];

end

case 'PCI'
% Knot point spacing

tmp = linspace(X(1),X(end),nOsc);

del_xx = tmp (2)-tmp (1);

% Number of out -of -band extrapolation points

nOut = 5;

% Knot point locations

xx = [linspace(X(1)-nOut*del_xx ,X(1)-del_xx ,nOut)

...

linspace(X(1),X(end),nOsc) linspace(X(end)+

del_xx ,X(end)+nOut*del_xx ,nOut)];

% Kappa at each knot point and extrapolate out of

band

K_tmp = @(yy) max(interp1(tmp ,yy ,xx ,'linear ','
extrap ') ,0);

% Apply the hilbert transform to kappa to solve

for n

N_tmp = @(yy ,a) -imag(hilbert(K_tmp(yy))) + a;

% Interpolate n and kappa back onto instrument

spectral axis

K = @(yy) interp1(tmp ,max(yy ,0),X,'pchip ');
N_tmp = @(yy ,a) interp1(xx ,N_tmp(yy ,a),X,'pchip ');

% Index of refraction

N = @(yy ,a) N_tmp(yy ,a) + 1i * K(yy);

% Fresnel
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cos_t = @ (yy ,a,Theta) sqrt(1 - bsxfun (@times ,sin(

Theta), ...

1 ./ N(yy ,a)).^2);

R_s = @ (yy ,a,Theta) abs(bsxfun (@minus ,cos(Theta),

...

bsxfun (@times ,N(yy ,a),cos_t(yy ,a,Theta))) ./

bsxfun (@plus ,cos(Theta), ...

bsxfun (@times ,N(yy ,a),cos_t(yy ,a,Theta)))).^2;

R_p = @ (yy ,a,Theta) abs(( cos_t(yy ,a,Theta) - ...

repmat(N(yy ,a),nAng ,1) .* repmat(cos(Theta) ,1,

nSpc)) ./ ...

(cos_t(yy ,a,Theta) + repmat(N(yy ,a),nAng ,1) .*

...

repmat(cos(Theta) ,1,nSpc))).^2;

R = @ (yy ,a,Theta) (R_s(yy ,a,Theta) + R_p(yy ,a,

Theta)) / 2;

if isempty(opts.Ld);

% Theoretical S0

S0_calc = @ (yy ,a,Tg ,Tl ,H2O ,O3 ,Te ,v) R(yy ,a,

theta) .* ...

squeeze(down(:,round(Tg),round(Tl),round(

H2O),round(O3) ,:)) + ...

(1 - R(yy ,a,theta)) .* repmat(planckian(v,

Te),nAng ,1) * 1e6;

% Theoretical tot_pol

tot_pol_calc = @ (yy ,a,Tg ,Tl ,H2O ,O3 ,Te ,v) (R_s

(yy ,a,theta) - ...

R_p(yy ,a,theta)) .* (0.5 .* squeeze(down

(:,round(Tg),round(Tl),round(H2O),round

(O3) ,:)) - ...

repmat(planckian(v,Te),nAng ,1) * 0.5e6);

else

% Theoretical S0

S0_calc = @ (yy ,a,Tg ,Tl ,H2O ,O3 ,Te ,v) R(yy ,a,

theta) .* ...

down + (1 - R(yy ,a,theta)) .* repmat(

planckian(v,Te),nAng ,1) * 1e6;
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% Theoretical tot_pol

tot_pol_calc = @ (yy ,a,Tg ,Tl ,H2O ,O3 ,Te ,v) (R_s

(yy ,a,theta) - ...

R_p(yy ,a,theta)) .* (0.5 .* down - repmat(

planckian(v,Te),nAng ,1) * 0.5e6);

end

if dT == 0;

% Define error function

if S0_only

error = @(x) norm(S0 -S0_calc(x(1: nOsc),x(

nOsc +1),x(nOsc +2), ...

x(nOsc +3),x(nOsc +4),x(nOsc +5),opts.Te ,

X),'fro');
elseif pol_only

error = @(x) norm(tot_pol -tot_pol_calc(x

(1: nOsc),x(nOsc +1),x(nOsc +2), ...

x(nOsc +3),x(nOsc +4),x(nOsc +5),opts.Te ,

X),'fro');
else

error = @(x) norm(tot_pol -tot_pol_calc(x

(1: nOsc),x(nOsc +1),x(nOsc +2), ...

x(nOsc +3),x(nOsc +4),x(nOsc +5),opts.Te ,

X),'fro') + ...

norm(S0 -S0_calc(x(1: nOsc),x(nOsc +1),x(

nOsc +2), ...

x(nOsc +3),x(nOsc +4),x(nOsc +5),opts.Te ,

X),'fro');
end

% Initial guess for algorithm and bounds

% x = [yy ; a ; Tg ; Tl ; H2O ; O3]

x_init = [ones(nOsc ,1) ; 1.4639 ; 10 ; 4 ;

10 ; 10];

x_lower = [zeros(nOsc ,1) ; 1 ; 1 ; 1 ;

1 ; 1];

x_upper = [10* ones(nOsc ,1) ; 1.5 ; 20 ; 5 ;

20 ; 20 ];

else

% Define error function

if S0_only

error = @(x) norm(S0 -S0_calc(x(1: nOsc),x(

nOsc +1),x(nOsc +2), ...
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x(nOsc +3),x(nOsc +4),x(nOsc +5),x(nOsc

+6),X),'fro');
elseif pol_only

error = @(x) norm(tot_pol -tot_pol_calc(x

(1: nOsc),x(nOsc +1),x(nOsc +2), ...

x(nOsc +3),x(nOsc +4),x(nOsc +5),x(nOsc

+6),X),'fro');
else

error = @(x) norm(tot_pol -tot_pol_calc(x

(1: nOsc),x(nOsc +1),x(nOsc +2), ...

x(nOsc +3),x(nOsc +4),x(nOsc +5),x(nOsc

+6),X),'fro') + ...

norm(S0 -S0_calc(x(1: nOsc),x(nOsc +1),x(

nOsc +2), ...

x(nOsc +3),x(nOsc +4),x(nOsc +5),x(nOsc

+6),X),'fro');
end

% Initial guess for algorithm and bounds

% x = [yy ; a ; Tg ; Tl ; H2O ; Te]

x_init = [ones(nOsc ,1) ; 1.4639 ; 10 ; 4 ;

10 ; 10 ; opts.Te];

x_lower = [zeros(nOsc ,1) ; 1.46 ; 1 ; 1 ;

1 ; 1 ; Te_lower ];

x_upper = [10* ones(nOsc ,1) ; 1.5 ; 20 ; 5 ;

20 ; 20 ; Te_upper ];

end

case 'BIR'
% Birefringence model for this fit is hard -coded

to one oscillator

% at this point

nOsc = 1;

% Lorentz oscillator model for dielectric constant

e1 = @ (vp ,v0 ,Xi ,f,einf ,v) einf + sum(repmat(f,1,

nSpc) .* ...

(repmat(vp ,nOsc ,nSpc).^2 .* (repmat(v0 ,1,nSpc)

.^2 - ...

repmat(v,nOsc ,1) .^2)) ./ (( repmat(v0 ,1,nSpc)

.^2 - ...

repmat(v,nOsc ,1) .^2) .^2 + repmat(Xi ,1,nSpc).^2

.* repmat(v,nOsc ,1) .^2) ,1);
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e2 = @ (vp ,v0 ,Xi ,f,v) sum(repmat(f,1,nSpc) .* (

repmat(vp ,nOsc ,nSpc).^2 .* ...

repmat(Xi ,1,nSpc) .* repmat(v,nOsc ,1)) ./ ((

repmat(v0 ,1,nSpc).^2 - ...

repmat(v,nOsc ,1) .^2) .^2 + repmat(Xi ,1,nSpc).^2

.* repmat(v,nOsc ,1) .^2) ,1);

% Index of refraction

N = @ (vp ,v0 ,Xi ,f,einf ,v) repmat ((1/ sqrt (2)) .*

sqrt(e1(vp ,v0 ,Xi ,f,einf ,v) + ...

sqrt(e1(vp ,v0 ,Xi ,f,einf ,v).^2 + e2(vp ,v0 ,Xi ,f,

v).^2)),nAng ,1) + ...

1i * repmat ((1/ sqrt (2)) .* sqrt(-e1(vp ,v0 ,Xi ,f

,einf ,v) + ...

sqrt(e1(vp ,v0 ,Xi ,f,einf ,v).^2 + e2(vp ,v0 ,Xi ,f,

v).^2)),nAng ,1);

% Fresnel

cos_t = @ (vp ,v0 ,Xi ,f,einf ,v,Theta) sqrt(1 -

bsxfun (@times ,sin(Theta), ...

1 ./ N(vp ,v0 ,Xi ,f,einf ,v)).^2);

R_s = @ (vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,v,Theta) abs(

bsxfun (@minus ,cos(Theta), ...

bsxfun (@times ,N(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,v),

cos_t(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,v,Theta)))

./ bsxfun (@plus ,cos(Theta), ...

bsxfun (@times ,N(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,v),

cos_t(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,v,Theta))))

.^2;

R_p = @ (vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v,Theta) abs((

cos_t(vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v,Theta) - ...

bsxfun (@times ,N(vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v),

cos(Theta))) ./ ...

(cos_t(vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v,Theta) +

bsxfun (@times ,N(vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v

), ...

cos(Theta)))).^2;

R = @ (vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,vp_p ,v0_p ,Xi_p ,

f_p ,einf_p ,v,Theta) (R_s(vp_s ,v0_s ,Xi_s ,f_s ,

einf_s ,v,Theta) + ...
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R_p(vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v,Theta)) / 2;

if isempty(opts.Ld);

% Theoretical S0

S0_calc = @(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,vp_p ,

v0_p ,Xi_p ,f_p ,einf_p ,Tg ,Tl ,H2O ,O3 ,Te ,v) ...

R(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,vp_p ,v0_p ,Xi_p

,f_p ,einf_p ,v,theta) .* ...

squeeze(down(:,round(Tg),round(Tl),round(

H2O),round(O3) ,:)) + ...

(1 - R(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,vp_p ,v0_p

,Xi_p ,f_p ,einf_p ,v,theta)) .* repmat(

planckian(v,Te),nAng ,1) * 1e6;

% Theoretical total polarization

tot_pol_calc = @(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,

vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,Tg ,Tl ,H2O ,O3 ,Te ,v

) ...

(R_s(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,v,theta) -

R_p(vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v,theta))

...

.* (0.5 .* squeeze(down(:,round(Tg),round(

Tl),round(H2O),round(O3) ,:)) - ...

repmat(planckian(v,Te),nAng ,1) * 0.5e6);

else

% Theoretical S0

S0_calc = @(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,vp_p ,

v0_p ,Xi_p ,f_p ,einf_p ,Tg ,Tl ,H2O ,O3 ,Te ,v) ...

R(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,vp_p ,v0_p ,Xi_p

,f_p ,einf_p ,v,theta) .* ...

down + (1 - R(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,

vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v,theta)) .*

repmat(planckian(v,Te),nAng ,1) * 1e6;

% Theoretical total polarization

tot_pol_calc = @(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,

vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,Tg ,Tl ,H2O ,O3 ,Te ,v

) ...

(R_s(vp_s ,v0_s ,Xi_s ,f_s ,einf_s ,v,theta) -

R_p(vp_p ,v0_p ,Xi_p ,f_p ,einf_p ,v,theta))

...

.* (0.5 .* down - repmat(planckian(v,Te),

nAng ,1) * 0.5e6);
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end

% Define error function

if S0_only

error = @(x) norm(S0 -S0_calc(x(4),x(1),x(2),x

(3),x(5),x(9),x(6),x(7),...

x(8),x(10),x(11),x(12),x(13),x(14),x(15),X

),'fro');
elseif pol_only

error = @(x) norm(tot_pol -tot_pol_calc(x(4),x

(1),x(2),x(3),x(5),x(9),x(6),x(7),...

x(8),x(10),x(11),x(12),x(13),x(14),x(15),X

),'fro');
else

error = @(x) norm(tot_pol -tot_pol_calc(x(4),x

(1),x(2),x(3),x(5),x(9),x(6),x(7),...

x(8),x(10),x(11),x(12),x(13),x(14),x(15),X

),'fro') + ...

norm(S0 -S0_calc(x(4),x(1),x(2),x(3),x(5),x

(9),x(6),x(7),...

x(8),x(10),x(11),x(12),x(13),x(14),x(15),X

),'fro');
end

% Initial guess for algorithm and bounds

% x = [v0 ; Xi ; f ; vp ; einf ; Tg ; Tl ; H2O ;

O3 ; Te]

x_init = [548 ; 14 ; 1 ; 1250 ; 3 ; 450 ; 18 ; 1

; 1350 ; 3 ; 10 ; 4 ; 10 ; 10 ; opts.Te];

x_lower = [300 ; 10 ; 1 ; 1000 ; 0 ; 290 ; 10 ; 1

; 1000 ; 0 ; 1 ; 1 ; 1 ; 1 ; Te_lower ];

x_upper = [800 ; 20 ; 1 ; 4000 ; 5 ; 790 ; 20 ; 1

; 4000 ; 5 ; 20 ; 5 ; 20 ; 20 ; Te_upper ];

end

% Implement algorithm of choice to search the parameter

space. By default

% the bounded fminsearch is used.

switch opts.Algorithm

case 'fmsb'
[x_meas ,fval ,exitflag ,output] = fminsearchbnd(

error ,x_init ,x_lower ,x_upper ,...
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optimset('MaxFunEvals ',1e15 ,'MaxIter ' ,1.5e4 ,'
PlotFcns ',@optimplotfval));

case 'q-n'
fitopts = optimoptions('fminunc ','Algorithm ','

quasi -newton ',...
'MaxFunEvals ',1e15 ,'PlotFcns ',@optimplotfval);

[x_meas ,fval ,~,~,~] = fminunc(error ,x_init ,fitopts

);

case 'hybrid '
[x_meas ,~,exitflag ,output] = fminsearchbnd(error ,

x_init ,x_lower ,x_upper ,...

optimset('MaxFunEvals ',1e15 ,'MaxIter ' ,200,'
PlotFcns ',@optimplotfval));

fitopts = optimoptions('fminunc ','Algorithm ','
quasi -newton ',...
'MaxFunEvals ',1e15 ,'PlotFcns ',@optimplotfval);

[x_meas ,fval ,~,~,~] = fminunc(error ,x_meas ,fitopts

);

end

% Parse out oscillator parameters

switch opts.Model

case 'LOM'
if opts.adj == 1;

Parameters.v0 = x_meas (1: nOsc);

Parameters.Xi = x_meas(nOsc +1:2* nOsc);

Parameters.f = x_meas (2* nOsc +1:3* nOsc);

Parameters.vp = x_meas (3* nOsc +1);

Parameters.einf = x_meas (3* nOsc +2);

Te = x_meas (3* nOsc +3);

Parameters.adj = x_meas (3* nOsc +4);

Parameters.Tr = x_meas (3* nOsc +5);

else

Parameters.v0 = x_meas (1: nOsc);

Parameters.Xi = x_meas(nOsc +1:2* nOsc);

Parameters.f = x_meas (2* nOsc +1:3* nOsc);

Parameters.vp = x_meas (3* nOsc +1);

Parameters.einf = x_meas (3* nOsc +2);

Parameters.Tg = x_meas (3* nOsc +3);

Parameters.Tl = x_meas (3* nOsc +4);

Parameters.H2O = x_meas (3* nOsc +5);

Parameters.O3 = x_meas (3* nOsc +6);

175



www.manaraa.com

Te = x_meas (3* nOsc +7);

% Parameters.TrLim = [Tr_lower Tr_upper ];

% Parameters.TeLim = [Te_lower Te_upper ];

end

% Predicted Downwelling Radiance

if isempty(opts.Ld);

Ld = squeeze(down(:,round(Parameters.Tg),round

(Parameters.Tl),...

round(Parameters.H2O),round(Parameters.O3)

,:));

else Ld = opts.Ld;

end

% Predicted n and kappa

n = real(mean(N(Parameters.vp ,Parameters.v0 ,

Parameters.Xi , ...

Parameters.f,Parameters.einf ,X) ,1));

kappa = imag(mean(N(Parameters.vp ,Parameters.v0 ,

Parameters.Xi , ...

Parameters.f,Parameters.einf ,X) ,1));

case 'PCI'
if dT == 0;

Parameters.yy = x_meas (1: nOsc);

Parameters.a = x_meas(nOsc +1);

Parameters.Tg = x_meas(nOsc +2);

Parameters.Tl = x_meas(nOsc +3);

Parameters.H2O = x_meas(nOsc +4);

Parameters.O3 = x_meas(nOsc +5);

Te = opts.Te;

else

Parameters.yy = x_meas (1: nOsc);

Parameters.a = x_meas(nOsc +1);

Parameters.Tg = x_meas(nOsc +2);

Parameters.Tl = x_meas(nOsc +3);

Parameters.H2O = x_meas(nOsc +4);

Parameters.O3 = x_meas(nOsc +5);

Te = x_meas(nOsc +6);

% Parameters.TrLim = [Tr_lower Tr_upper ];

% Parameters.TeLim = [Te_lower Te_upper ];

end

% Predicted downwelling radiance
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if isempty(opts.Ld);

Ld = squeeze(down(:,round(Parameters.Tg),round

(Parameters.Tl),...

round(Parameters.H2O),round(Parameters.O3)

,:));

else Ld = opts.Ld;

end

% Predicted n and kappa

n = mean(real(N(Parameters.yy ,Parameters.a))

,1);

kappa = mean(K(Parameters.yy) ,1);

case 'BIR'
Parameters.v0_s = x_meas (1);

Parameters.Xi_s = x_meas (2);

Parameters.f_s = x_meas (3);

Parameters.vp_s = x_meas (4);

Parameters.einf_s = x_meas (5);

Parameters.v0_p = x_meas (6);

Parameters.Xi_p = x_meas (7);

Parameters.f_p = x_meas (8);

Parameters.vp_p = x_meas (9);

Parameters.einf_p = x_meas (10);

Parameters.Tg = x_meas (11);

Parameters.Tl = x_meas (12);

Parameters.H2O = x_meas (13);

Parameters.O3 = x_meas (14);

Te = x_meas (15);

Parameters.n_1 = real(mean(N(Parameters.vp_s ,

Parameters.v0_s ,Parameters.Xi_s ,Parameters.f_s ,

Parameters.einf_s ,X) ,1));

Parameters.n_2 = real(mean(N(Parameters.vp_p ,

Parameters.v0_p ,Parameters.Xi_p ,Parameters.f_p ,

Parameters.einf_p ,X) ,1));

Parameters.k_1 = imag(mean(N(Parameters.vp_s ,

Parameters.v0_s ,Parameters.Xi_s ,Parameters.f_s ,

Parameters.einf_s ,X) ,1));

Parameters.k_2 = imag(mean(N(Parameters.vp_p ,

Parameters.v0_p ,Parameters.Xi_p ,Parameters.f_p ,

Parameters.einf_p ,X) ,1));
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% Predicted n and kappa

n = (Parameters.n_1 + Parameters.n_2) / 2;

kappa = (Parameters.k_1 + Parameters.k_2) / 2;

% Predicted downwelling radiance

if isempty(opts.Ld);

Ld = squeeze(down(:,round(Parameters.Tg),round

(Parameters.Tl),...

round(Parameters.H2O),round(Parameters.O3)

,:));

else Ld = opts.Ld;

end

end

disp(['Objective Function Value = ' num2str(fval)]);
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